Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:04:43.790Z Has data issue: false hasContentIssue false

Diffusion in Metallic Glasses and Supercooled Melts

Published online by Cambridge University Press:  17 March 2011

F. Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, D-24143 Kiel, Germany, [email protected]
K. Rätzke
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, D-24143 Kiel, Germany, [email protected]
H. Ehmler
Affiliation:
Now at: MPI für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany
P. Klugkist
Affiliation:
Now at:MPI für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
V. Zöllmer
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, D-24143 Kiel, Germany, [email protected]
C. Nagel
Affiliation:
Now at: Fraunhofer Institut für Fertigungstechnik und Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
A. Rehmet
Affiliation:
On leave from: I. Phys. Institut and SFB 345, Bunsenstr. 9, D-37073 Göttingen, Germany
A. Heesemann
Affiliation:
Now at: RELOG GmbH, Marconistr., D-24145 Kiel, Germany
Get access

Abstract

Diffusion in metallic glasses and in the supercooled liquid state is of considerable interest not only from the technological point of view but also in terms of fundamental science, particularly in connection with the glass transition. Within the framework of the mode coupling theory the glass transition is a kinetic phenomenon characterized by the arrest of viscous flow at a critical temperature Tc well above the calorimetric glass transition temperature Tg. Below Tc the theory predicts cooperative hopping processes. We present results from isotope effect measurements which indeed confirm the highly collective nature of diffusion in metallic glasses and suggest cooperative hopping processes to be closely related to the universal low-frequency excitations as observed in recent molecular dynamic simulations. In accord with the mode coupling scenario these cooperative hopping processes are also observed in the supercooled liquid state of the new bulk metallic glasses well above Tg. The reported kink in the Arrhenius plot for diffusion of various elements is shown to be related to structural changes above Tg, e.g., an increase in free volume as probed by positron annihilation, but not to a change in the diffusion mechanism. Measurements of the activation volume of diffusion indicate that, depending on the structure of the glass, cooperative hopping may take place without assistance of thermally generated defects or via delocalized thermal defects. Moreover, we provide evidence of the existence of an opposite Kirkendall effect in interdiffusion between certain amorphous alloys that combine slow diffusion via thermal defects and fast direct diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Luborsky, H.E., Amorphous Metallic Alloys (Butterworths, London, 1983).Google Scholar
[2] Hilzinger, R., High Frequency Magnetic Materials 1999, Santa Clara, CA, 1999 Google Scholar
[3] Inoue, A., Zhang, T. Masumoto, T., Mater. Trans. JIM 31 (1990) 177.Google Scholar
[4] Peker, A., Johnson, W.L., Appl. Phys. Lett. 63, 17 (1993) 2342.Google Scholar
[5] Ashley, S., Mechanical Engineering, 1998, p 72 Google Scholar
[6] Hays, C.C., Kim, C. P., Johnson, W. L., Phys. Rev. Lett, 84 (2000) 2901 Google Scholar
[7] Cantor, B. in: Amorphous Metals and Semiconductors, eds. Haasen, P., Jaffee, R. 1988, 323 Google Scholar
[8] Faupel, F., Phys. Stat. Sol. (a) 134 (1992) 9.Google Scholar
[9] Kronmüller, H. in: Springer Ser. Mat. Sci. Vol 29, edited by Otooni, M. A. (Springer Verlag, Berlin) 1998, p 93.Google Scholar
[10] Mehrer, H., Rummel, G., Diffusion in Amorphous Materials, (1994) 163 Google Scholar
[11] Limoge, Y., Mat. Sci. Eng. A 226 (1997) 228 Google Scholar
[12] Nakajima, H., Nonaka, K., Kojima, T., Zhang, T. and Inoue, A., Mater. Sci. Forum (1999) 304 Google Scholar
[13] Nakajima, H., Nonaka, K., Zumkley, T., Nishiyama, N. and Inoue, A., Proc. Int. Conf. on Solid-Solid Phase Transformation99, edited by Koiwa, M., Otsuka, K. and Miyazaki, T., Japan Inst. Metals (1999) 441 Google Scholar
[14] Averback, R. S., MRS Bulletin 16 (1991) 47.Google Scholar
[15] Sharma, S. K., Banerjee, S., Jain, K., Jain, K.A., J.Mater.Res. 4 (1989) 603 Google Scholar
[16] Sharma, S. K.; Faupel, F., Mat. Res. Soc. 14 (1999) 3200 Google Scholar
[17] Faupel, F., Hüppe, P.W., Rätzke, K., Phys. Rev. Lett. 65 (1990) 1219.Google Scholar
[18] Rätzke, K., Heesemann, A., Faupel, F., J. Phys.: Cond. Matt. 7 (1995) 7633.Google Scholar
[19] Heesemann, A., Rätzke, K., Faupel, F., Hoffmann, J., Heinemann, K., Europhys. Lett. 29 (1995) 221.Google Scholar
[20] Heesemann, A., Zöllmer, V., Rätzke, K., Faupel, F., Phys. Rev. Lett. 84 (2000) 1467.Google Scholar
[21] Rätzke, K., Klugkist, P., Faupel, F., Def. Diff. Forum. 165–166 (1999) 43.Google Scholar
[22] Höfler, H.J., Averback, R.S., Rummel, G., Mehrer, H., Phil. Mag. Lett. 66 (1992) 301.Google Scholar
[23] Frank, W., Def. Diff. Forum 143–147 (1997) 695.Google Scholar
[24] Schober, H.R., Oligschleger, C., Laird, B.B., J. Non-Cryst. Sol. 156–158 (1993) 965.Google Scholar
[25] Röβler, U.K., Teichler, H., Phys. Rev. E 61 (2000) 394.Google Scholar
[26] Donati, C.; Douglas, J.F.; Kob, W.; Plimpton, S.J.; Poole;, P.H. and Glotzer, S.C., Phys. Rev. Lett. 80 (1998) 2338.Google Scholar
[27] Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F., Geyer, U., Phys. Rev. Lett. 80, (1998) 4919. H. Ehmler, PhD Thesis, University of Kiel, 1999Google Scholar
[28] Knorr, K., Macht, M.P., Freitag, K., Mehrer, H., J. non cryst. sol. 250 (1999) 669. and K. Knorr, PhD Thesis, University of Münster, 1999Google Scholar
[29] Fielitz, P., Macht, M.P., Naundorf, V., Frohberg, G., J. non cryst. sol. 250 (1999) 674.Google Scholar
[30] Geyer, U., Johnson, W.L., Schneider, S., Qiu, Y., Tombrello, T.A., Macht, M.P., Appl. Phys. Lett. 69 (1996) 17.Google Scholar
[31] Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., Macht, M.P., Phys. Rev. Lett. 75 (1995) 2364.Google Scholar
[32] Tang, X.P., Geyer, U., Busch, R., Johnson, W.L., Wu, Y., Nature, 402 (1999) 160.Google Scholar
[33] Götze, W., Sjögren, L., J. Non-Cryst. Sol. 131–133 (1991) 161.Google Scholar
[34] Sjoegren, L., J. Phys. B. 79, 5 (1990).Google Scholar
[35] Götze, W. J. Phys. cond. matt. 11 (1999) A1 and references therein.Google Scholar
[36] Horváth, J., Pfahler, K., Ulfert, W., Frank, W. Kronmüller, H., Mat. Sci. Eng. 15 (1987) 523.Google Scholar
[37] Tyagi, A.K., Macht, M.P., Naundorf, V., Acta metall. Mater. 39 (1991) 609.Google Scholar
[38] Polymeric Gas Separation Membranes, Eds. Paul, D.R., Yampolskii, Y, CRC Boca Raton 1994 Google Scholar
[39] Diffusion in Solid Metals and Alloys, Ed.: Mehrer, H., Börnstein, Landolt, New Series, Group III 26 (Springer-Verlag, Berlin, 1991).Google Scholar
[40] Philibert, J., Diffusion and Mass Transport in Solids, Les Editions de Physique, (1991) Chap. 4Google Scholar
[41] Ishioka, S., Nakajima, H. and Korwa, M., Phil. Mag. A 55 (1987) 359.Google Scholar
[42] Hüppe, P.-W., Faupel, F., Phys. Rev. B, 46, 120 (1992).Google Scholar
[43] Röβler, U.K., Teichler, H., Phys. Rev. E 61 (2000) 394.Google Scholar
[44] Kluge, M., Schober, H. DIMAT 2000, Paris, July 2000, to appear: Def. Diffusion ForumGoogle Scholar
[45] Teichler, H., Proc. NCM 8, Aberystwyth, Aug. 2000, to appear in J. non cryst. Sol.Google Scholar
[46] Gaukel, C.; Schober, H. R., Solid State Comm. 107, (1998) 1 Google Scholar
[47] Suck, J.-B., Rudin, H. in: Glassy Metals II, edited by Beck, H. and Güntherodt, H.-J., Topics in L2.1.11 Applied Physics 53 (Springer, Berlin 1983) p. 217.Google Scholar
[48] Buchenau, U., Prager, M., Nücker, N., Dianoux, A.J., Ahmad, N., Phillips, W.A., Phys. Rev. B 34 (1986) 5665.Google Scholar
[49] Buchenau, U., Zhou, H.M., Nücker, N., Gilroy, K.S., Philips, W. A., Phys. Rev. Lett., 60 (1988) 1368.Google Scholar
[50] Inoue, K.. Kanaya, T., Ikeda, S, Kaji, D., Shibata, K., Misawa, M., Kiyanagi, Y., J. Chem. Phys. 95 (1991) 5332.Google Scholar
[51] Schober, H. R., Physica A, 201 (1993) 14.Google Scholar
[52] Klugkist, P., Rätzke, K., Rehders, S., Troche, P., Faupel, F., Phys. Rev. Lett. 80 (1998) 3288.Google Scholar
[53] Rummel, G., Mehrer, H., Phys. Stat. Sol. (a) 185 (1994) 327.Google Scholar
[54] Duine, P.A., Wonnell, S.K., Sietsma, J., Mater. Sci. Eng. A 179/180 (1994) 270.Google Scholar
[55] Klugkist, P., Rätzke, K., Faupel, F., Troche, P., Fielitz, P., Naundorf, V., Phil. Mag. Lett. 79 (1999) 827.Google Scholar
[56] Loirat, Y., Bocquet, J.L., Limoge, Y., J. non-cryst.sol. 265 (2000) 252.Google Scholar
[57] Klugkist, P., Rätzke, K., Faupel, F., Phys. Rev. Lett. 81 (1998) 614.Google Scholar
[58] Tu, K.N., Chou, T.C., Phys. Rev. Lett. 61, (1988) 1863.Google Scholar
[59] Dörner, W. und Mehrer, H., Phys. Rev. B 44, 1 (1991) 101.Google Scholar
[60] Horvath, J., Ott, J., Pfahler, K., Ulfert, W., Mater. Sci. Eng. 97 (1988) 409.Google Scholar
[61] Stelter, E., Lazarus, D., Phys. Rev. B 36 (1987) 9545.Google Scholar
[62] Spaepen, F., Physics of Defects, Les Houches Lectures XXXV, eds.: Balian, R., Kléman, M. and Poirer, J.P., North Holland, Amsterdam, 133 (1981).Google Scholar
[63] Beukel, A. van den, Key Eng. Mat. 81–83 (1993) 3.Google Scholar
[64] Tang, X. P., Busch, R., Johnson, W.L., Wu, Y. Phys. Rev. Lett. 81 (1998) 5358.Google Scholar
[65] Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U., Faupel, F., Phys. Rev. B. 57, 10224, (1998).Google Scholar
[66] Nagel, C., Rätzke, K., Schmidtke, E., Faupel, F., Ulfert, W. Phys. Rev. B 60 (1999) 9212.Google Scholar
[67] Egami, T., Ann. New York Acad. Sci., 371 (1981) 238.Google Scholar
[68] Zöllmer, V., Ehmler, H., Rätzke, K., Troche, P., Faupel, F., Europhys. Lett. 51 (2000) 75.Google Scholar
[69] Rätzke, K., Hüppe, P.W., Faupel, F., Phys. Rev. Lett. 68 (1992) 2347.Google Scholar
[70] Ehmler, H., Rätzke, K., Faupel, F., J. non cryst. sol. 250 (1999) 684.Google Scholar
[71] Schober, H.R., Gaukel, C., Oligschleger, C., Prog. Theor. Phys. 126 (1997) 67.Google Scholar
[72] Kirkaldy, J.S. Young, D.J., Diffusion in the Condensed State, Inst. of Metals, London, 1987.Google Scholar
[73] Nachtrieb, N.H., Ber. Bunsenges. Phys. Chem. 80, 678 (1976).Google Scholar
[74] Shimoji, M. and Itami, T., Diffusion and Defect Data, Atomic Transport in Liquids and Metals (Trans. Tech. Publications, Aedermannsdorf, 1986).Google Scholar
[75] Kluge, M., Schober, H.R., Phys. Rev. E 62 (2000) 597.Google Scholar
[76] Rehmet, A., Rätzke, K., Faupel, F., Geyer, U., in preparation for publicationGoogle Scholar
[77] Proceedings of the fifth international conference on rapidly quenched materials, Steeb, S., Warlimont, H. (eds) (North Holland, New York, 1985).Google Scholar
[78] Sreeramalu, V., Ravindrachary, V., Sreepad, H. R., Chandrashekara, A., Gopal, S., Sanjeevaia, H., Viswanathan, B., Phys. Stat. Sol. A 117, 53 (1990).Google Scholar
[79] Triftshäuser, W., Kögel, G., in: NATO ASI Series E 118, Lüscher, E., Fritsch, G., 218 (1987).Google Scholar
[80] Krištiaková, K., Krištiak, J., Švec, P., Šauša, O., Duhaj, P., Mater. Sci. Eng. B 39, (1996) 15.Google Scholar
[81] Meyer, A., Wuttke, J., Petry, W., Randl, O.G. Schober, H., Phys. Rev. Lett. 80 (1998) 4454.Google Scholar