Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:51:10.572Z Has data issue: false hasContentIssue false

Diffusion in Gallium Arsenide and GaAs-Based Layered Structures

Published online by Cambridge University Press:  25 February 2011

U. Gösele
Affiliation:
School of Engineering, Duke University, Durham, NC 27706, USA
T. Y. Tan
Affiliation:
School of Engineering, Duke University, Durham, NC 27706, USA
Shaofeng Yu
Affiliation:
School of Engineering, Duke University, Durham, NC 27706, USA
Get access

Abstract

The mechanisms of Ga self-diffusion can be derived from interdiffusion experiments in intrinsic and doped GaAs-based superlattices. These experiments allow to conclude that Ga self-diffusion in intrinsic and n-doped GaAs is carried by triply negatively charged gallium vacancies whereas in p-doped GaAs positively charged gallium self-interstitials dominate Ga self-diffusion. The diffusion mechanisms of Zn and Be are discussed with special emphasis on the difference between their in- and out-diffusion behavior which is due to diffusion-induced non-equilibrium point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tan, T. Y. and Gösele, U., Appl. Phys. A37, (1985).Google Scholar
2 Fahey, P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
3 Tan, T. Y. and Gösele, U., Mat. Science Eng. 31, 47 (1988).Google Scholar
4 Deppe, D. G. and Holonyak, N. Jr., J. Appl. Phys. 64, R93 (1988).Google Scholar
5 Kendall, D. L., in Semiconductors and Semimetals, Vol. 4, (Academic Press, New York, 1968), p.163.Google Scholar
6 Casey, H. C., in Atomic Diffusion in Semiconductors, Vol. 4, (Academic Press, New York, 1968), p.163.Google Scholar
7 Tuck, B., Atomic Diffusion in III-V Semiconductors, (Hilger, Bristol, 1988).Google Scholar
8 Seeger, A. and Chick, K. P., Phys. Stat. Sol. 29, 455 (1968).Google Scholar
9 Hu, S. M., J. Appl. Phys. 45, 1567 (1974).Google Scholar
10 Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
11 Shockley, W. and Moll, J. L., Phys. Rev. 119, 1480 (1960).Google Scholar
12 Tan, T. Y. and Gösele, U., J. Appl. Phys. 61, 1841 (1987).Google Scholar
13 Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).Google Scholar
14 Gösele, U., Frank, W. and Seeger, A., Appl. Phys. A. 23, 361 (1980).Google Scholar
15 Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, Murch, G. E. and Nowick, A. S., eds. (Academic Press, New York 1984) p. 64.Google Scholar
16 Gösele, U., Ann. Rev. Mater. Sci. 18, 257 (1988).Google Scholar
17 Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 1990 (1989).Google Scholar
18 Robinson, H. G., Deal, M. D. and Stevenson, D. A., these proceedings.Google Scholar
19 Kavanagh, K. L., Mayer, J. W., Magee, J. W., Sheets, J., Tong, J. and Woodall, J. M., Appl. Phys. Lett. 47, 1208 (1985).Google Scholar
20 Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
21 Palfrey, H. D., Brown, M. and Willoughby, A. F. W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar
22 Petroff, P. M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
23 Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W. and Logan, R. A., J. Appl. Phys. 51, 357 (1980).Google Scholar
24 Cibert, J., Petroff, P. M., Werder, D. J., Pearton, S. J., Gossard, A. C. and English, J. H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
25 Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
26 Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A. and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
27 Guido, L. J., Holonyak, N. Jr., Hsieh, K. C., Kaliski, R. W., Plano, W. E., Burnham, R. D., Thornton, R. L., Epler, J. E. and Paoli, T. L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
28 Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
29 Van Vechten, J. A., J. Appl. Phys. 53, 7082 (1982); J. Vac. Sa: Technology B2, 569 (1984).Google Scholar
30 Deppe, D. G., Holonyak, N. Jr., Hsieh, K. C., Gavrilovic, P., Stutius, W. and Williams, L., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
31 Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1986).Google Scholar
32 Mei, P., Schwartz, S. A., Venkatesan, T., Schwartz, C. L., Bernsek, S., Stillman, G. and Temkin, H., in Mat. Res. Soc. Proc. 126 (Pittsburgh, 1988) in press.Google Scholar
33 Tan, T. Y. and Gösele, U., in Mat. Res. Soc. Proc. 144 (Pittsburgh. 1989) p.22l.Google Scholar
34 Lee, J. W. and Laidig, W. D., J. Electron. Mater. 13, 147 (1984).Google Scholar
35 Kawabe, M., Shimizu, N., Hasegawa, F. and Nannidi, Y., Appl. Phys. Lett. 46, 849 (1985).Google Scholar
36 Kamata, N., Koboyashi, K., Eudo, K., Sasudi, T. and Misu, A., Jpn. J. Appl. Phy. 26, 1092 (1987).Google Scholar
37 Myers, D. R., Biefeld, R. M., Fritz, I. J., Piccaux, S. T. and Zipperian, T. E., Appl. Phys. Lett. 44, 1052 (1984).Google Scholar
38 Hirayama, Y., Susuki, Y. and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).Google Scholar
39 Ralston, J., Wicks, G. W., Eastman, L. F., Deooman, B. C. and Carter, C. B., J. Appl. Phys. 59, 120 (1986).Google Scholar
40 Zucker, E. P., Hasimoto, A., Fukunaga, T. and Watanabe, N., Appl. Phys. Lett. 54, 564 (1989).Google Scholar
41 Longini, R. L., Solid-State Electronics 5, 127 (1962).Google Scholar
42 Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
43 Deppe, D. G., Holonyak, N. Jr., Plano, W. E., Robbins, V. M., Dallesasse, J. M., Hsieh, K. C. and Baker, J. E., J. Appl. Phys. 64, 2854 (1988).Google Scholar
44 Winteler, H. R., Helv. Phys. Acta 44, 451 (1970).Google Scholar
45 Marioton, B. R. P., Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 54, 849 (1989).Google Scholar
46 Guido, L. J., Cunningham, B. T., Nam, D. W., Hsieh, K. C., Plano, W. E., Major, J. S. Jr., Vesely, E. J., Sugg, A. R., Holonyak, N. Jr. and Stillman, G. E., J. Appl. Phys. 67, (1989), in press.Google Scholar
47 Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 740 (1984).Google Scholar
48 Greiner, M. E. and Gibbons, J. F., J. Appl. Phys. 57, 5181 (1985).Google Scholar
49 Kavanagh, K. L., Mayer, J. W., Magee, J. W., Sheets, J., Tong, J. and Woodall, J. M., Appl. Phys. Lett. 47, 1208 (1985).Google Scholar
50 Kavanagh, K. L., Magee, C. W., Sheets, J., and Mayer, J. W., J. Appl. Phys. 64, 1845 (1988).Google Scholar
51 Deppe, D. G., Holonyak, N. Jr., Kish, F. A. and Baker, J. E., Appl. Phys. Lett, 50, 998 (1987).Google Scholar
52 Deppe, D. G., Holonyak, N. Jr. and Baker, J. E., Appl. Phys. Lett. 52, 129 (1988).Google Scholar
53 Murray, J. J., Deal, M. D. and Stevenson, D. A., these proceedings.Google Scholar
54 Yu, S., Gösele, U. and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar
55 Yu, S., Gösele, U. and Tan, T. Y., these proceedings.Google Scholar
56 Allen, E. L., Deal, M. D. and Plummer, J. D., these proceedings.Google Scholar
57 Kuech, T. F., Goorsky, M., Cardone, F., Scilla, G. and Potemski, R., these proceedings.Google Scholar
58 Tuck, B. and Kadhim, M. A., J. Mater.Science 7, 585 (1972).Google Scholar
59 Ball, R. K., Hutchinson, P. W. and Dobson, P. S., Phil. Mag. A43, 1299 (1981).Google Scholar
60 Luysberg, M., Jäger, W., Urban, K., Perret, M., Stolwijk, N. and Mehrer, H., these proceedings.Google Scholar
61 Tuck, B. and Houghton, A. J. N., J. Phys. D14, 2147 (1981).Google Scholar
62 Enquist, P., Hutchby, J. H. and Lyon, T. J., J. Appl. Phys. 63, 4485 (1985).Google Scholar
63 Masu, K., Konagai, M. and Takahashi, V., Appl. Phys. Lett. 37, 183 (1980).Google Scholar
64 Enquist, P., Wicks, G. W., Eastman, L. F. and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).Google Scholar
65 Houston, P. A., Shepherd, F. R., Springthorpe, A. J., Mandeville, P. and Margittai, A., Appl. Phys. Lett. 52, 49 (1981).Google Scholar