Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T17:04:59.467Z Has data issue: false hasContentIssue false

Diffusion and Subsurface Bonding of Hydrogen in Silicon

Published online by Cambridge University Press:  26 February 2011

A. E. Jaworowski
Affiliation:
Department of Physics, Wright State University, Dayton, OH 45435, USA
L. S. Wielunski
Affiliation:
Department of Physics, SUNY at Albany, Albany, NY 12222, USA
Get access

Abstract

The hydrogen depth profiling in the near-surface region in silicon reveals the existence of a subsurface hydrogen layer. This layer acts as a barrier to diffusion. The observed subsurface hydrogen profile rises and then drops off sharply with increasing depth and is stable up to 770 K. Our annealing data indicate a rather complex motion of monatomic and molecular hydrogen in the near-surface region (<1500 A) in the temperature range 300 – 800 K. The subsurface molecule formation represents the dominant hydrogen trapping process in silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

Present address: CSIRO, Div.Mat.Sc.Tech., Menai, NSW 2234, Australia

References

REFERENCES

1. See, e.g., Pearton, S.J., J. Electron. Mater. 14a, 737 (1985).Google Scholar
2.Seager, C.H., Anderson, R.A. and Panitz, J.K.G., J. Mater. Res. 2, 96 (1987).Google Scholar
3.Corbett, J.W., Peak, D., Pearton, S.J. and Sganga, A.G., in NATO ASI on Hydrogen in Disordered and Amorphous Solids, edited by Bambakidis, G. (Plenum, New York, 1986).Google Scholar
4.Pankove, J.I., Zanzucchi, P.J., Magee, C.W. and Lukovsky, G., Appl. Phys. Lett. 46, 421 (1985).Google Scholar
5.DeLeo, G.G. and Fowler, W.B., J. Electron. Mater. 14a, 745 (1985).Google Scholar
6.Assali, L.V. and Leite, J.R., Phys. Rev. Lett. 55, 980 (1985).Google Scholar
7.Pearton, S.J., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Solids, edited by Mikkelsen, J.M. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Materials Research Society, Pittsburgh, 1986), p. 487.Google Scholar
8.Capizzi, M. and Mittiga, A., Appl. Phys. Lett. 50, 918 (1987).Google Scholar
9.Johnson, N.M., Ponce, F.A., Street, R.A. and Nemanich, R.J., Phys. Rev. B 35, 4166 (1987).Google Scholar
10.Stutzmann, M., Phys. Rev. B 5921 (1987).Google Scholar
11.Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987).Google Scholar
12.Jaworowski, A.E. and Corbett, J.W., J. Electron. Mater. 14a, 767 (1985).Google Scholar
13.Jaworowski, A.E., Wielunski, L.S. and Listerman, T.W., in Microscopic Indentification of Electronic Defects in Semiconductors, edited by Johnson, N.M., Bishop, S.G. and Watkins, G.D. (Materials Research Society, New York 1985), Vol.46, p.561.Google Scholar
14.Jaworowski, A.E., Wielunski, L.S. and Bambakidis, G., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Solids, edited by Mikkelsen, J.M. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Materials Research Society, Pittsburgh, 1986), p.501.Google Scholar
15.Corbett, J.W., Sahu, S.N., Shi, T.S. and Snyder, L.C., Phys. Lett. 93A, 303 (1983).Google Scholar
16.Mainwood, A. and Stoneham, A.M., Physica 116B, 101 (1983); J. Phys. C. Solid State Physics. 17. 2513 (1984).Google Scholar
17.Baranowski, J.M.,(to be published).Google Scholar
18.Johnson, N.M. and Moyer, M.D., Appl. Phys. Lett. 46, 787 (1985).Google Scholar
19.Johnson, N.M., Phys. Rev. B 31, 5525 (1985).Google Scholar
20.Johnson, N.M., Herring, C. and Chadi, D.J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
21.Robison, J.H. and Jaworowski, A.E., (to be published).Google Scholar