Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:31:11.938Z Has data issue: false hasContentIssue false

Diffusion and Reactive Properties in Disordered Porous Media and in Confining Geometries

Published online by Cambridge University Press:  10 February 2011

Pierre Levitz*
Affiliation:
Centre de recherche sur la matière divise´e, CNRS, lB rue de la ferollerie, 45017 Orleans Cedex 2, FRANCE, levitz @cnrs-orleans.fr
Get access

Abstract

Disordered porous networks are important examples of confining geometries. A challenging problem is to couple the morphology and the topology of such disordered systems with the diffusion and the reactive properties of embedded fluids (gases or liquid) inside the porous medium. Looking at the properties of the self-diffusion propagator, we first discuss how the geometric confinement influences the molecular diffusion and how the coupling between interfacial geometry and transport evolves in space and time. In the long time regime, two specific situations are presented. First, we focus on transport properties inside a membrane-like disordered matrix, the sponge phase (symmetric or asymmetric). Second, we discuss some basic properties of the Knudsen diffusion. The particular coupling with the pore network geometry allows to analyse this transport process in term of the continuous time random walk formalism (C.T.R.W.). An interesting consequence for some specific disordered porous media or “low dimension” geometries is a transition from a Gaussian diffusion to a Levy walk. Finally, excitation and relaxation kinetics are discussed. More specifically, NMR relaxation of water inside a Vycor glass is investigated and a comparison with recent experimental results is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pellenq, R., Rodts, S., Pasquier, V., Delville, A., P. Levitz. in Adsorption (1998)Google Scholar
2. Joshi, M. Y.. Ph. D thesis, Univ. Of Kansas,1974.Google Scholar
3. Quiblier, J. A.. J. Coll. Interf. Sci. 98 84, (1984)Google Scholar
4. Adler, P.M., Jacquin, C. G., Quiblier, J.A.. Int. J. Multiphase Flow. 16, 691,(1990).Google Scholar
5. Levitz, P., Advances in Colloid and Interface Science, 76–77, 71106, (1998)Google Scholar
6. Berk, N. F., Phys. Rev. A., 44, 5069, (1991)Google Scholar
7. Teubner, M.. Europhysics letters. 14, 403, (1991)Google Scholar
8. Levitz, P.., J.Phys.Chem. 97, 3813, (1993)Google Scholar
9. Schelinger, M.L., Klafter, J., Phys. Rev. Lett. 54, 2551,(1985)Google Scholar
10. Levitz, P., Europhysics Letter, 39,593, (1997)Google Scholar
11. Levitz, P., Tchoubar, D.. J.Phys I. 2, 771, (1992).Google Scholar
12. Cahn, J. W.. J. Chem. Phys.. 42, 93, (1965).Google Scholar
13. Levitz, P., Ehret, G., Sinha, S. K., Drake, J. M.. J.Chem.Phys., 95, 6151, (1991)Google Scholar
14. Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., Zelaya, F. O.. Nature, 351,467, (1991)Google Scholar
15. Mitra, P.P., Sen, P.N., Schwartz, L.M., Doussal, P. Le. Phys. Rev. Lett. 68, 3555, (1992).Google Scholar
16. Pasquier, V., Levitz, P., Delville, A., J. Phys. chem. 100, 10249, (1996).Google Scholar
17. Derjaguin, B. C. R. Acad. Sci. URSS. 7, 623, (1948)Google Scholar
18. Vinches, C., Coulon, C., Roux, D., J. Phys II,4, 11651193, (1994)Google Scholar
19. Alibert, I., Coulon, C., Bellocq, A.M., Europhysics Letters 39, 563,(1997)Google Scholar
20. Alibert, I., These de I'université de Bordeaux, France (1997)Google Scholar
21. Coulon, C., Roux, D., Bellocq, A.M., Phys. Rev. Lett., 66, 1709,(1992)Google Scholar
22. Jonsson, B., Wennerstrom, H, Nilsson, P.G., Linse, P., Col. and Pol. Sci. 264,77,(1986)Google Scholar
23. Meting, J.. and Tchoubar, D., J.Appl.Cryst. 1, 153, (1968)Google Scholar
24. Klafter, J., Zumofen, G., Physica A, 196, 102, (1993).Google Scholar
25. Zumofen, G., Klafter, J., Physica D. 69, 436, (1993)Google Scholar
26. S. Staps, Kimmich, R., Niess, J., J. Appl. Phys., 75, 529, (1994)Google Scholar
27. S. Stapf, Kimmich, R., Seitter, R.O., Phys. Rev. Lett, 75, 2855, (1995)Google Scholar
28. Korb, J.P., Whaley-Hodges, M., Bryant, R.G., Phys. Rev. E., 56, 1934,(1997).Google Scholar
29. Halle, B., Wennerstrom, H., J. Chem. Phys, 75, 1928,(1981)Google Scholar
30. Porion, P., Faugere, M., Ldcollier, E., Gherardy, B., Delville, A.,J.Phys.Chem.,102,3477,(1998)Google Scholar
31. Lee, S.H., Rossky, P. J.. J. Chem. Phys.,100, 3334,(1994)Google Scholar
32. Bellisent-Funel, M.C., Chen, S. H., Zanotti, J. M., Phys. Rev. E.,51, 4558, (1995).Google Scholar