Article contents
Diffuse X-Ray Scattering for the Study of Defects in Silicon*
Published online by Cambridge University Press: 15 February 2011
Abstract
X-ray diffuse scattering can be used to study the size, concentration, and nature of lattice defects and defect clusters in crystalline materials. The availability of analytical models and detailed numerical calculations for the “Huang” diffuse scattering close to Bragg reflections and the “asymptotic” diffuse scattering at somewhat larger distances from Bragg reflections has made it possible to carry out detailed analyses of the intensity and angular distribution of the diffuse scattering in terms of specific defect parameters. Accordingly, diffuse scattering has been used to study point defects, dislocation loops, and precipitates in metals, semiconductors, and insulators and has provided information on defect geometries, size distributions, and concentrations. In this paper, the theoretical framework necessary for the interpretation of the “Huang” and “asymptotic” diffuse scattering from defect clusters is presented and examples of diffuse scattering calculations for defects in silicon are given. Diffuse scattering from clustered defects in silicon is discussed in terms of the type of information available from this scattering and the relative merits of diffuse scattering as an investigative tool for defect clusters. Diffuse scattering analysis techniques for the determination of separate size distributions for vacancy and interstitial dislocation loops in silicon are presented and applied to diffuse scattering measurements on neutron irradiated silicon. Dislocation loop densities and sizes determined in the as-irradiated state and after thermal anneals are compared with electron microscopy results.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1981
Footnotes
Research sponsored by the Division of Materials Sciences, U. S. Department of Energy under contract W–7405–eng–26 with Union Carbide Corporation.
References
REFERENCES
- 1
- Cited by