Published online by Cambridge University Press: 14 December 2011
Void formation in irradiated materials is an intriguing and technologically important physical process associated with radiation damage. In this communication, we present a diffuse interface model for simulating void formation in materials under irradiation. Voids are treated as aggregates of vacancies left from the cascade damage. The emergence of the void ensembles in the irradiated material is modeled by an Allen-Cahn equation coupled with two Cahn-Hilliard equations governing the space and time evolution of vacancies and interstitials. The governing system of equations includes stochastic generation of point defects representing the cascade process, reaction of vacancies and interstitials, interaction of point defects with extended defects (viz., void surface and grain boundaries) and thermal fluctuations in defects. Numerical simulations demonstrating the model capabilities with respect to nucleation and growth of voids and swelling of the irradiated material are presented.