Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T06:56:19.110Z Has data issue: false hasContentIssue false

Diffraction Studies of the Growth of Strained Epitaxial Layers

Published online by Cambridge University Press:  28 February 2011

G.J. Whaley
Affiliation:
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455
P.I. Cohen
Affiliation:
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

The molecular beam epitaxial growth of strained InGaAs films grown on GaAs(100) substrates has been studied using in situ reflection high-energy electron diffraction (RHEED). Both the intensity, shape and position of the diffracted beams were monitored during growth. Growth was found to be layer-by-layer up to a strain dependent thickness, at which point three-dimensional clusters were formed. These clusters exhibited (114) facets and were elongated in the [011] direction. The onset of 3D cluster formation was simultaneous with measurable lattice relaxation. The relaxation was determined using electromagnetic deflection of the RHEED pattern across two detectors. With this arrangement, the lattice constant could be measured to within 0.003Å. The onset could be delayed by lowering the growth temperature. For misfit strain greater than about 2%, the onset occurs at thicknesses less than the Matthews-Blakeslee critical thickness. For smaller strains, the onset occurs at larger thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Whaley, G.J. and Cohen, P.I., Bull. Amer. Phys. Soc., 31, 52 (1986).Google Scholar
2Whaley, G.J., Masters Thesis, University of Minnesota, 1987 (unpublished).Google Scholar
3Sakamoto, K., Sakamoto, T., Nagao, S., Hashigushi, G., Bando, Y., Jap. J. Appl. Phys. 26, 666 (1987).Google Scholar
4Price, G., Appl. Phys. Lett. 53, 1288 (1988).Google Scholar
5Whaley, G.J., Cohen, P.I., J. Vac. Sci. Technol. B, 6, 625 (1988).Google Scholar
6Matthews, J.W., Blakeslee, A.E., J. Cryst. Gr. 27, 118 (1974).Google Scholar
7Cohen, P.I., Pukite, P.R., Van Hove, J.M., Lent, C.S., J. Vac. Sci. Technol. A, 4, 1251 (1986).Google Scholar
8 FEI Company, Hillsboro, OR.Google Scholar
9Hancock, B.R., Kroemer, H., J. Appl. Phys. 55 4239 (1984).Google Scholar
10Berger, P.R., Chang, K., Bhattacharya, P., Singh, J., J. Vac. Sci. Technol. B, 5, 1162 (1987).Google Scholar
11Nakao, H., Yao, T., Jap. J. Appl. Phys. 28 L352 (1989).Google Scholar
12Van Hove, J.M., Lent, C.S., Pukite, P.R., Cohen, P.I., J. Vac. Sci. Technol. B, 1, 741 (1983).Google Scholar
13Joyce, B.A., Dobson, P.J., Neave, J.H., Woodbridge, K., Zhang, J., Larson, P.K., Bolger, B., Surf. Sci. 168, 423 (1986).Google Scholar
14Purcell, S.T., Arrott, A.S., Heinrich, B., J. Vac. Sci. Technol. B, 6, 794 (1988).Google Scholar
15Wowchak, A.M., Kusnia, J.N., Cohen, P.I., J. Vac. Sci. Technol. B 7, 733 (1989).Google Scholar
16Van Hove, J.M., Ph.D. Thesis, University of Minnesota, 1985.Google Scholar
17Cohen, P.I., Petrich, G.S., Pukite, P.R., Whaley, G.J., Surf. Sci. 216, 222 (1989).Google Scholar
18Clark, S., Vvedensky, D., J. Appl. Phys. 63, 2272 (1988).Google Scholar
19Lievin, J.L., Fonstad, C.G., Appl. Phys. Lett. 51, 1173 (1987).Google Scholar
20Hockings, E.F., Kudman, I., Seidel, T.E., Schmeltz, C.M., Steigmeir, E.F., J. Appl. Phys. 37, 2879 (1966).Google Scholar
21Miyake, S., Sci. Pap. Inst. Phys. Chem. Res. Tokyo 34, 565 (1938).Google Scholar
22Pukite, P.R., Ph.D. Thesis, Univerisity of Minnesota, 1988.Google Scholar
23Van Hove, J.M., Cohen, P.I., J. Vac. Sci. Technol. 20, 726 (1982).Google Scholar
24Van Hove, J.M., Pukite, P.R., Cohen, P.I., J. Vac. Sci. Technol. B 3, 563 (1985).Google Scholar
25Elman, B., Koteles, E.S., Melman, P., Jagannath, C., Lee, J., Dugger, D., Appl. Phys. Lett. 55, 1659 (1989).Google Scholar
26Orders, P.J., Usher, B.F., Appl. Phys. Lett. 50, 980 (1987).Google Scholar
27Wie, C.R., J. Appl. Phys. 65, 2267 (1989).Google Scholar
28Fritz, I.J., Gourley, P.L., Dawson, L.R., Appl. Phys. Lett. 51, 1004 (1987).Google Scholar
29Fritz, I.J., Picraux, S.T., Dawson, L.R., Drummond, T.J., Laidig, W.D., Anderson, N.G., Appl. Phys. Lett. 46, 967 (1985).Google Scholar
30People, R., Bean, J.C., Appl. Phys. Lett. 47 322 (1985).Google Scholar
31Dodson, B.W., Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987).Google Scholar
32Fritz, I.J., Appl. Phys. Lett. 51, 1080 (1987).Google Scholar
33Andersson, T.G., Chen, Z.G., Kulakovskii, V.D., Uddin, A., Vallin, J.T., Appl. Phys. Lett. 51 752 (1987).Google Scholar
34Berger, P.R., Chang, K., Bhattcharya, P., Singh, J., Bajaj, K.K., Appl. Phys. Lett. 53, 684 (1988).Google Scholar
35Srolovitz, D.J., Acta Met. 37, 621 (1989).Google Scholar