Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:54:14.842Z Has data issue: false hasContentIssue false

Different Temperature Dependencies of Magnetic Interface and Volume Anisotropies in Gd / W(110)

Published online by Cambridge University Press:  15 February 2011

M. Farle
Affiliation:
Institut für Experimentalphysik, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany
B. Schulz
Affiliation:
Institut für Experimentalphysik, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany
A. Aspelmeier
Affiliation:
Institut für Experimentalphysik, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany
G. Andre
Affiliation:
Institut für Experimentalphysik, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany
K. Baberschke
Affiliation:
Institut für Experimentalphysik, FU Berlin, Arnimallee 14, D-14195 Berlin, Germany
Get access

Abstract

The magnetic anisotropy of epitaxial Gd(0001) films on W(110) is determined as a function of temperature (150 to 350 K) and film thickness (9 to 30 monolayers) by in situ ferromagnetic resonance. It is found that the usual analysis in terms of a thickness independent part KV and a thickness dependent contribution 2KS/d must be performed at the same reduced temperature t = T/Tc(d). Kv shows qualitatively the same temperature dependence as the magnetocrystalline anisotropy of bulk Gd. It changes in sign near 0.7 Tc and does not vanish at Tc. KS on the other hand decreases linearly from 1.2 meV/atom at 0.6.Tc to zero at Tc. It appears that the intrinsic origin for Kv and KS is fundamentally different. The vanishing of KS at Tc indicates that two-ion anisotropy (spin-spin interaction) is dominating the interface anisotropy. The non- zero KV(T≥Tc) is likely due to a single ion magnetic anisotropy which is known for bulk Gd.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gradmann, U. and Müller, P., Phys. Stat. Sol. 27, 313 (1968), U. Gradmann; J. Magn. Magn. Mater. 54-57, 733 (1986).Google Scholar
[2] Garcia, P. F., Meinhaldt, A. D., and Suna, A.; Appl. Phys. Lett. 47, 178 (1985)Google Scholar
[3] Bergholz, R. and Gradmann, U.; J. Magn. Magn. Mat. 45, 389 (1984)Google Scholar
[4] Schulz, B., and Baberschke, K; Phys. Rev. B50, 13467 (1994)Google Scholar
[5] Jungblut, R., Johnson, M. T., Stegge, J. aan de, Reinders, A., and Broeder, F. J. A. den; J. Appl. Phys. 75, 6424 (1994)Google Scholar
[6] In our definition Kv does not contain the shape anisotropy 2πM2. In the literature Kv sometimes includes 2πM2 and care must be taken when comparing Kv values.Google Scholar
[7] Chappert, C., and Bruno, P.; J. Appl. Phys. 64, 5736 (1988)Google Scholar
[8] Clemens, B. M., White, R.L., Nix, W. D., and Bain, J. A.; Mat. Res. Soc. Symp. Proc. Vol. 231, 459 (1991)Google Scholar
[9] Andre, G., Aspelmeier, A., Schulz, B., Farle, M., and Baberschke, K.; Surface Science 326, 275 (1995)Google Scholar
[10] See for example Symposium C on Magnetic Thin Films, Multilayers and Surfaces, edited by Fert, A., Güntherodt, G., Heinrich, B., Marinero, E. E., and Maurer, M., Proceedings of the E-MRS Spring 1990 Meeting, Strasbourg [J. Magn. Magn. Mat. 93 (1991)].Google Scholar
[11] Chikazumi, S., Physics of Magnetism, (Robert E. Krieger Publishing Co., Malabar, 1964) p. 147.Google Scholar
[12] Coqblin, B., The Electronic Structure of Rare-Earth Metals and Alloys: the Magnetic Heavy Rare-Earths (Academic, London, 1977)Google Scholar
[13] Tang, H., Weller, D., Walker, T. G., Scott, J. C., Chappert, C., Hopster, H., Pang, A. W., Dessau, D. S., and Pappas, D. P.; Phys. Rev. Lett. 71, 444 (1993)Google Scholar
[14] Berger, A., Pang, A. W., and Hopster, H.; J. Magn. Magn. Mat. 137, LI (1994)Google Scholar
[15] Erickson, R. R., and Mills, D. L.; Phys. Rev. B 43, 11527 (1991)Google Scholar
[16] Farle, M., Berghaus, A. and Baberschke, K; Phys. Rev. B39, 4838 (1989)Google Scholar
[17] Aspelmeier, A., Gerhardter, F., and Baberschke, K; J. Magn. Magn. Mat. 132, 22 (1994)Google Scholar
[18] Stetter, U., Farle, M., Baberschke, K, and Clark, W. G.; Phys. Rev. B45, 503 (1992)Google Scholar
[19] Farle, M., Baberschke, K, Stetter, U., Aspelmeier, A., and Gerhardter, F.; Phys. Rev. 47, 11571 (1993)Google Scholar
[20] Stetter, U., Aspelmeier, A., and Baberschke, K; J. Magn. Magn. Mat. 116, 183 (1992)Google Scholar
[21] Lewis, W. A., and Farle, M.; J. Appl. Phys. 75, 5604 (1994)Google Scholar
[22] Néel, L.; J. Phys. Rad. 15, 225 and 376 (1954)Google Scholar
[23] Bruno, P. and Renard, J.P.; Appl. Phys. A49, 499 (1989)Google Scholar
[24] Bruno, P.; Phys. Rev. B 39, 865 (1989)Google Scholar