Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:58:27.877Z Has data issue: false hasContentIssue false

Differences in the Surface Charging at the (100) and (110) Surfaces of Li2B4O7

Published online by Cambridge University Press:  31 January 2011

David Wooten
Affiliation:
[email protected], Air Force Institute of Technology, Engineering Physics, Dayton, Ohio, United States
Ihor Ketsman
Affiliation:
[email protected], University of Nebraska-Lincoln, Physics Department, Lincoln, Nebraska, United States
Jie Xiao
Affiliation:
[email protected], University of Nebraska-Lincoln, Physics Department, Lincoln, Nebraska, United States
Ya. B. Losovyj
Affiliation:
[email protected], Louisiana State University, Center for Advanced Microstructures and Devices, Baton Rouge, Louisiana, United States
James C. Petrosky
Affiliation:
[email protected], Air Force Institute of Technology, Engineering Physics, Dayton, Ohio, United States
J. McClory
Affiliation:
[email protected], Air Force Institute of Technology, Engineering Physics, Dayton, Ohio, United States
Ya. Burak
Affiliation:
[email protected], Ivan Franko National University of Lviv, Institute of Physical Optics, Lviv, Ukraine
V. Adamiv
Affiliation:
[email protected], Ivan Franko National University of Lviv, Institute of Physical Optics, Lviv, Ukraine
Peter A Dowben
Affiliation:
[email protected], University of Nebraska-Lincoln, Physics Department, Lincoln, Nebraska, United States
Get access

Abstract

From angle resolved photoemission, the (100) surface termination of Li2B4O7 is significantly more polar than the (110) surface termination although the accepted dipole orientation of this pyroelectric crystal is along (001). Consistent with the surface termination, the surface charging at the surface of (100) is significantly greater than observed at (110) and plays a role in the surface photovoltage effects. Because of the different interfaces formed, device properties likely depend upon crystal faces of lithium borate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caruso, A.N. Billa, Ravi B. Balaz Jennifer, S. Brand, I. and Dowben, P.A. J. Phys. Cond. Mat. 16, L139 (2004).Google Scholar
2. Robertson, B.W. Adenwalla, S. Harken, A. Welsch, P. Brand, J.I. Dowben, P.A. and Claassen, J.P., Appl. Phys. Lett. 80, 3644 (2002).Google Scholar
3. Robertson, B.W. Adenwalla, S. Harken, A. Welsch, P. Brand, J.I. Claassen, J.P. Boag, N.M., and Dowben, P.A. Adv. Neutron Scatt. Instrum., Anderson, I.S.; Guèrard, B., Eds. Proc. SPIE 4785, 226 (2002).Google Scholar
4. Adenwalla, S. Billa, R. Brand, J.I. Day, E. Diaz, M.J. Harken, A. McMullen-Gunn, A.S., Padmanabhan, R. and Robertson, B.W. Penetrating Radiation Systems and Applications V, Proc. SPIE 5199, 70 (2003).Google Scholar
5. Osberg, K. Schemm, N. Balkir, S. Brand, J.I. Hallbeck, S. Dowben, P. and Hoffman, M.W., IEEE Sensors J. 6 (2006) 1531; K. Osberg, N. Schemm, S. Balkir, J.I., Brand S. Hallbeck, P. Dowben, 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006) Proceedings 1179 (2006).Google Scholar
6. Caruso, A.N. Dowben, P.A. Balkir, S. Schemm, N. Osberg, K. Fairchild, R.W. Flores, O. B., Balaz, S. Harken, A.D. Robertson, B.W. and Brand, J.I. Mat. Sci. Engin. B 135, 129 (2006).Google Scholar
7. Day, E. Diaz, M.J. and Adenwalla, S. J. Phys. D: Appl. Phys. 39, (2006) 2920 Google Scholar
8. McGregor, D.S. Unruh, T.C. McNeil, W.J. Nucl. Instrum. Methods Phys. Res. A 591, 530 (2008)Google Scholar
9. Uher, J. Pospisil, S. Linhart, V. Schieber, M. Appl. Phys. Lett. 90, 124101 (2007)Google Scholar
10. Kumashiro, Y. J. Mater. Res. 5, 2933 (1990)Google Scholar
11. Kumashiro, Y. J. Solid State Chem. 133, 314 (1997)Google Scholar
12. , Sangeeta, Chennakesavulu, K. Deai, D.G. Sabharwal, S.C. Alex, M. Ghodgaonkar, M.D. Nucl. Instrum. Methods Phys. Res. A 571, 699 (2007)Google Scholar
13. Burak, Ya. B. Adamiv, V.T. Teslyuk, I.M. Shevel, V.M. Rad. Meas. 38, 681 (2004)Google Scholar
14. Islam, M.M. Maslyuk, V.V. Bredow, T. Minot, C. J. Phys. Chem. B 109, 13597 (2005)Google Scholar
15. Adamiv, V.T. Burak, Ya. B. Kityk, I.V. Kasperczyk, J. Smok, R. Czerwinski, M. Optical Materials 8, 207 (1997)Google Scholar
16. Bhalla, A.S. Cross, L.E. Whatmore, R.W. Jap. J. Appl. Phys. 24, suppl. 24–2, 727 (1985)Google Scholar
17. Dowben, P.A. Miller, A. editors, Surface Segregation Phenomena Phenomena, CRC Press, Boca Raton, Florida (1990)Google Scholar
18. Losovyj, Ya.B. Ketsman, I. Morikawa, E. Wang, Z. Tang, J. Dowben, P.A. Nucl. Instrum. Methods Phys. Res. A 582, 264 (2007)Google Scholar
19. Losovyj, Ya. B. Wooten, D. Santana, J. C. An, J. M. Belashchenko, K. D. Lozova, N. Petrosky, J., Sokolov, A. Tang, J. Wang, W. Arulsamy, N. Dowben, P.A. J. Phys. Cond. Matter 21 (2009) 045602 Google Scholar
20. Dowben, P.A. LaGraffe, D. and Onellion, M. J. Phys. Cond. Matt. 1, 6571 (1989)Google Scholar
21. McIlroy, D.N. Zhang, J. Dowben, P.A. Heskett, D. Mat. Sci. Eng. A 217/218, 64 (1996)Google Scholar
22. Borca, C.N. Komesu, T. Dowben, P.A. J. Electron Spectrosc. Rel. Phenom. 122, 259 (2002)Google Scholar
23. Yakovkin, I.N. Dowben, P.A. Surf. Rev. Letters 14, 481 (2007)Google Scholar
24. Ortega, J.E. Himpsel, F.J. Li, D. Dowben, P.A. Solid State Commun. 91, 807 (1994)Google Scholar
25. Kuznetsov, A. Yu, Kruzhalov, A.V. Ogorodnikov, I.N. Sobolev, A.B. Isaenko, L.I. Phys. Sold. State 41, 48 (1999)Google Scholar