Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:42:48.988Z Has data issue: false hasContentIssue false

Differences in The Growth Mechanism of InxGa1−xAs on GaAs Studied by The Electrical Properties of Al0.3Ga0.7As/InxGa1−xAs Heterostructures (0.2 ≤ × ≤ 0.4)

Published online by Cambridge University Press:  25 February 2011

T. Schweizer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, 78 Freiburg, Tullastr. 72, Germany
K. Köhler
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, 78 Freiburg, Tullastr. 72, Germany
P. Ganser
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, 78 Freiburg, Tullastr. 72, Germany
P. Hiesinger
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, 78 Freiburg, Tullastr. 72, Germany
W. Rothemund
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, 78 Freiburg, Tullastr. 72, Germany
Get access

Abstract

Lattice mismatched InxGa1−xAs layers with InAs mole fractions below 0.25 grow in a two dimensional growth mode on GaAs. If the thickness of these layers is beyond the critical layer thickness the strain relaxes through misfit dislocations. The misfit dislocation density in the <011> and <01-1> direction differs for n-type layers. This results in a highly anisotropic electron mobility for GaAs/InxGa1−xAs/Al0.3Ga0.7As inverted HEMT structures. A higher electron mobility in the < 011 > direction is measured in comparison to the <01-1> direction. The resistance ratio in the two perpendicular directions exceeds 105. For a three dimensional growth mode, the InxGa1−xAs layer shows interface roughness which degrades the transport properties of the normal Al0.3Ga0.7As/ InxGa1−xAs/ GaAs HEMT structures more than the inverted GaAs/InxGa1−xAs/ Al0.3Ga0.7As HEMT structures. For a three dimensional growth mode, an anisotropic electron mobility for Al0.3Ga0.7As/InxGal, As/GaAs HEMT structures is also observed. For these structures the highest electron mobility is measured in the < 01-1 > direction. This anisotropy could be explained by anisotropic growth rates in the <011> and < 01-1 > directions which results in growth islands with asymmetric extensions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schweizer, T., Köhler, K., Ganser, P., Hiilsmann, A., and Tasker, P., Appl. Phys. A53, 109 (1991).Google Scholar
2. Matthews, J.W. and Blakeslee, A-E., J.Cryst.Growth 27, 118 (1974).Google Scholar
3. Fritz, I.J., Picraux, T., Dawson, L.R., Laidig, W.D., and Anderson, N.G., Appl. Phys. Lett. 46, 967 (1985).Google Scholar
4. Anderson, T.G., Chen, Z.G., Kulakovskii, V.D., Uddin, A., and Vallin, J.T., Appl, Phys. Lett. 51, 752 (1987).Google Scholar
5. Berger, P.R., Chang, K., Bhattacharya, P., Singh, J., and Bajaj, K.K, Appl. Phys. Lett. 53, 684 (1988).Google Scholar
6. Price, G.L., Appl. Phys. Lett. 53, 1288 (1988).Google Scholar
7. Pamulapati, J., Berger, P., Chang, K., Oh, J., Chen, Y., Singh, J., Bhattacharya, P., and Gibala, R., J. Cryst. Growth 95, 193 (1989).Google Scholar
8. Whaley, G.J. and Cohen, P.I., Mater. Res. Soc. Symp. Proc. 160 35 (1990).Google Scholar
9. Chang, K.H., Gibala, R., Srolovitz, D.J., Bhattacharya, P.K., and Mansfield, J.F., J. Appl. Phys. 67, 4093 (1990).Google Scholar
10. Yao, J.Y., Andersson, T.G., and Dunlop, G.L., J. Appl. Phys. 69, 2224 (1991).Google Scholar
11. Schweizer, T., Kohler, K., Wagner, J., Ganser, P., Maier, M., Bachem, K.H. Voigt, A., and Strunk, H.P., Superlattices and Microstructures 8, 183 (1990).Google Scholar
12. Maier, M., As, D.J., Köhler, K., and Höpner, A., Proc. 8. Int. Conf. on SIMS, Wiley 1992 in press.Google Scholar
13. Petroff, P.M., Logan, R.A. und Savage, A., J. Microscopy 118, 255 (1980).Google Scholar
14. Grundmann, M., Lienert, U., Christen, J., Bimberg, D., Fischer-Colbrie, A., and Miller, J.N., J.Vac.Sci. Technol. B 8, 751 (1990).Google Scholar
15. Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Maroe, P.M.J., Schaff, W., Mayer, J.W., Petit, D., Woodall, J.M., Stroscio, J.A., and Feenstra, R.M., J. Appl. Phys. 64, 4843, (1988).Google Scholar
16. Breen, K.R., Uppal, P.N., and Ahearn, J.S., J. Vac. Sci. Technol. B7, 758 (1989).Google Scholar
17. Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G., Kirchner, P.D., Petit, G.D., and Woodall, J.M., J. Appl. Phys 65, 2220 (1989).Google Scholar
18. Green, G.S., Tanner, B.K., Barnett, S.J., Emeny, M., Pitt, A.D., Whitehouse, C.R., and Clark, C.F., Phil.Mag.Lett. 62, 131 (1990).Google Scholar
19. Watson, G.P., Thompson, M.O., Ast, D.G., Fischer-Colbrie, A., and Miller, J., J. Electr. Mater. 12, 957 (1990).Google Scholar
20. Schweizer, T., Köhler, K., Rothemund, W., and Ganser, P., Appl. Phys. Lett. 59, 2736 (1991).Google Scholar
21. Sun, Q., Morris, D., Lacelle, C., and Roth, A.P., Mat. Res. Soc. Proc. 160, 783 (1989).Google Scholar
22. Bhal, S.R., Azzam, W.J., and Alamo, J.A. del, J. Cryst. Growth 111, 479 (1991).Google Scholar
23. Sheng, P., Phys. Rev. B21, 2180 (1980).Google Scholar
24. Woodall, J.M., Pettit, G.D., Jackson, T.N., and Lanza, C., Phys. Rev. Lett. 51, 1783 (1983).Google Scholar
25. Hiesinger, P., Schweizer, T., Köhler, K., Ganser, P., Rothemund, W., and Jantz, W., submitted to J. Appl. Phys.Google Scholar
26. Fox, B.A. and Jesser, W.A., J. Appl. Phys. 68, 2739 (1990).Google Scholar
27. Schweizer, T., Köhler, K., and Ganser, P., Semicond. Sci. Technol. 6, 356 (1991).Google Scholar
28. Webb, C., Eckstein, J.N., and Desai, Y.M., J. Cryst. Growth 111, 309 (1991).Google Scholar
29. Ohta, K., Kojima, T., and Nakagawa, T., J. Cryst. Growth 95, 71 (1989)Google Scholar
30. Hata, M., Isu, T., Watanabe, A., and Katayama, Y., J. Vac. Sci. Technol. B8, 692 (1990).Google Scholar
31. Sugaya, T., Yokoyama, S., and Kawabe, M., Inst.Phys.Conf.Ser. 106, 147, (1989).Google Scholar