Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:02:41.721Z Has data issue: false hasContentIssue false

Diethynyl Aryl Derivatives for P-Channel and N-Channel Organic Field-Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Takeshi Yasuda
Affiliation:
[email protected], Kyushu University, Institute for Material Chemistry and Engineering, Kasuga koen 6-1, Kasuga, Fukuoka, 816-0943, Japan
Kimiaki Kashiwagi
Affiliation:
[email protected], Asahi Glass Co., Ltd., Research Center, Yokohama, Kanagawa, 221-8755, Japan
Yoshitomi Morizawa
Affiliation:
[email protected], Asahi Glass Co., Ltd., Research Center, Yokohama, Kanagawa, 221-8755, Japan
Tetsuo Tsutsui
Affiliation:
[email protected], Kyushu University, Institute for Material Chemistry and Engineering, Kasuga koen 6-1, Kasuga, Fukuoka, 816-0943, Japan
Get access

Abstract

Organic field-effect transistors (OFETs) consisted of vacuum-evaporated diethynyl aryl derivatives were prepared and the device characteristics were evaluated. The fabricated OFETs showed typical p-type characteristics for diethynyl naphthalene derivative with two end naphthyl groups. By optimizing the fabrication process, the device exhibited a high field-effect hole mobility up to 0.12 cm2V−1s−1 and a high on/off current ratio of 3.3×105. On the other hand, OFETs showed typical n-type characteristics for diethynyl aryl derivative with two end heptafluoronaphthyl groups. We have observed clear changes from p-channel to n-channel conductions in OFETs by chemically modifying diethynyl aryl derivatives.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murphy, A. R. and Frechet, J. M. J., Chem. Rev. 107, 1066 (2007).Google Scholar
2. Takimiya, K., Kunugi, Y. and Otsubo, T., Chem. Lett. 36, 578 (2007).Google Scholar
3. Ito, K., Suzuki, T., Sakamoto, Y., Kubota, D., Inoue, Y., Sato, F. and Tokito, S., Angew. Chem. Int. Ed. 42, 1159 (2003).Google Scholar
4. Klauk, H., Zschieschang, U., Weitz, R. T. Meng, H., Sun, F., Nunes, G., Keys, D. E. Fincher, C. R. and Xiang, Z., Adv. Mater. 19, 3882 (2007).Google Scholar
5. Roy, V. A. L., Zhi, Y.G. Xu, Z.X. Yu, S.C. Chan, P. W. H. and Che, C.M. Adv. Mater. 17, 1258 (2005).Google Scholar
6. Oyamada, T., Shao, G., Uchiuzou, H., Nakanotani, H., Orita, A., Otera, J., Yahiro, M. and Adachi, C., Jpn. J. Appl. Phys. 45, L1331 (2006).Google Scholar
7. Kashiwagi, K., Yasuda, T. and Tsutsui, T., Chem. Lett. 36, 1194 (2007).Google Scholar
8. Yasuda, T., Kashiwagi, K., Morizawa, Y. and Tsutsui, T., J. Phys. D: Appl. Phys. 40, 4471 (2007).Google Scholar
9. Nakajima, Y., Yamashita, D., Endo, A., Oyamada, T., Adachi, C. and Uda, M., Proceedings of The 11th International Display Workshops (IDW.04) 1391 (2004).Google Scholar
10. Nakajima, Y., Hoshino, M., Yamashita, D. and Uda, M., Adv. Quantum Chem. 42, 399 (2003).Google Scholar
11. Yasuda, T., Saito, M., Nakamura, H. and Tsutsui, T., Appl. Phys. Lett. 89, 182108 (2006).Google Scholar
12. Yasuda, T., Fujita, K., Nakashima, H. and Tsutsui, T., Jpn. J. Appl. Phys. 42, 6614 (2003).Google Scholar
13. Pfeiffer, M., Leo, K., Zhou, X., Huang, J. S. Hofmann, M., Werner, A. and Blochwitz-Nimoth, J., Org. Electron. 4, 89 (2003).Google Scholar
14. Yasuda, T., Goto, T., Fujita, K. and Tsutsui, T., Appl. Phys. Lett. 85, 2098 (2004).Google Scholar
15. Yasuda, T., Goto, T., Fujita, K. and Tsutsui, T., Mol. Cryst. Liq. Cryst. 444, 219 (2006).Google Scholar