Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:38:51.354Z Has data issue: false hasContentIssue false

Dielectric Study of a Photo-Ckosslinkable Nonlinear Optical Polymer

Published online by Cambridge University Press:  25 February 2011

J. I. Chen
Affiliation:
Departments of Chemistry and Physics, University of Massachusetts at Lowell, Lowell, MA 01854.
R. A. Moody
Affiliation:
University of Massachusetts at Lowell, Lowell, MA 01854.
Y. M. Chen
Affiliation:
University of Massachusetts at Lowell, Lowell, MA 01854.
J. Y. Lee
Affiliation:
Departments of Chemistry and Physics, University of Massachusetts at Lowell, Lowell, MA 01854.
S. K. Sengupta
Affiliation:
Departments of Chemistry and Physics, University of Massachusetts at Lowell, Lowell, MA 01854.
J. Kumar
Affiliation:
University of Massachusetts at Lowell, Lowell, MA 01854.
S. K. Tripathy
Affiliation:
Departments of Chemistry and Physics, University of Massachusetts at Lowell, Lowell, MA 01854.
Get access

Abstract

Temperature and frequency dependent measurements are utilized to study the relaxation behavior of a photocrosslinking nonlinear optical (NLO) material based on a polyvinylcinnamate (PVCN) polymer matrix. 3-cinnamoyloxy-4-[4-(N, N-diethylamino)-2-cinnamoyloxy phenyl azo] nitrobenzene (CNNB-R) is used as a functionalized NLO active dye. Measurements of dielectric properties of PVCN doped with different levels of CNNB-R have been performed. NLO dye molecules were bonded to the host polymer by ultraviolet irradiation. Measurements were carried out from 50 to 200 °C and a frequency range of 30 Hz to 1 MHz. The effects of dye content and UV irradiation on the dielectric response are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaton, D. F., Science 253, 281(1991).Google Scholar
2. Singer, K. D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248(1986).Google Scholar
3. Mandai, B., Chen, Y., Jeng, R. J., Takahashi, T., Huang, J., Kumar, J., and Tripathy, S.K., Eur. Polym. J. 22, 735(1991).Google Scholar
4. Eich, M., Sen, A., Looser, H., Bjorklund, G. C., Swalen, J. D., Twieg, R., and Yoon, D. Y., J. Appl. Phys. 66, 2559 (1989).Google Scholar
5. Wu, J. W., Valley, J. F., Ermer, S., Binkley, E. S., Kenney, J. T., and Lytel, R., Appl. Phys. Lett. 59, 2213(1991).Google Scholar
6. Reck, B., Eich, M., Jungbauer, D., Twieg, R. J., Willson, C. G., Yoon, D. Y., and Bjorklund, G. C., SPIE 1147, 74 (1989).Google Scholar
7. Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 58., 225(1991).Google Scholar
8. Jungbauer, D., Reck, B., Twieg, R., Yoon, D. Y., Willson, C. G., and Swalen, J. D., Appl. Phys. lett. 56, 2610(1990).Google Scholar
9. Mandai, B. K., Kumar, J., Huang, J. C., and Tripathy, S. K., Makromol. Chem., Rapid Commun. 12, 63(1991).Google Scholar
10. Chen, M., Yu, L., Dalton, L., Shi, Y., and Steier, W., Macromolecules 24, 5421(1991).Google Scholar
11. Hampsch, H. L., Yang, J., Wong, G. K., and Torkelson, J. M., Macromolecules 23, 3640(1990).Google Scholar
12. Hampsch, H. L., Yang, J., Wong, G. K., and Torkelson, J. M., Macromolecules 23, 3648(1990).Google Scholar
13. Teraoka, I., Jungbauer, D., Reck, B., Yoon, D. Y., Twieg, R., and Willson, C.G., J.Appl. Phys. 69, 2568(1991).Google Scholar
14. Jungbauer, D., Teraoka, I., Yoon, D. Y., Reck, B., Swalen, J. D., Twieg, R., and Willson, C. G., J.Appl. Phys. 69, 8011(1991).Google Scholar
15. Kohler, W., Robello, D. R., Willand, C. S., and Williams, D. J., Macromolecules 24, 4589(1991).Google Scholar
16. Mandai, B., Chen, Y., Lee, J. Y., Kumar, J., and Tripathy, S. K., Appl. Phys. Lett. 58, 2459(1991).Google Scholar