Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:08:54.831Z Has data issue: false hasContentIssue false

Dielectric Properties and Long-Range Structural Order in (x)Pb(In1/2Nb1/2)O3:(1-x)Pb(Mg1/3Nb2/3)O3 Relaxor Ceramics

Published online by Cambridge University Press:  01 February 2011

C. W. Tai
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
K. Z. Baba-kishi
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Get access

Abstract

The relative permittivity of (x)Pb(In1/2Nb1/2)O3:(1-x)Pb(Mg1/3Nb2/3)O3 ceramics with compositions x=0.1, 0.3 and 0.6 were found to exhibit relaxor behavior. The maximum values of the relative permittivity at 100 Hz were ∼ 6500 at -2°C, 4000 at 5°C and 3700 at 15°C for x=0.1, 0.3 and 0.6, respectively. The 1:1 structural long-range ordering and forbidden reflections were studied by transmission electron microscopy. The size of the ordered domains increased with increasing Pb(In1/2Nb1/2)O3. In addition to the superstructure reflection 1/2 1/2 1/2, the forbidden reflection 1/2 1/2 0 and streaking were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cross, L. E., Jpn. J. Appl. Phys. 34, 2525 (1995).10.1143/JJAP.34.2525Google Scholar
2. Haertling, G. H., J. Am. Ceram. Soc. 82, 797 (1999).10.1111/j.1151-2916.1999.tb01840.xGoogle Scholar
3. Rolov, B. N., Soviet Phys. – Solid State 6, 1676 (1965).Google Scholar
4. Smolenskii, G. A., J. Phys. Soc. Jpn. 28 Suppl., 26 (1970).Google Scholar
5. Cross, L. E., Ferroelectrics 76, 241 (1987).10.1080/00150198708016945Google Scholar
6. Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).10.1063/1.328296Google Scholar
7. Lin, L. J. and Wu, T. B., J. Am. Ceram. Soc. 73, 1253 (1990).10.1111/j.1151-2916.1990.tb05188.xGoogle Scholar
8. Woodward, P. M. and Baba-kishi, K. Z., J. Appl. Crystallogr. 35, 233 (2002).10.1107/S0021889802001280Google Scholar
9. Groves, P., J. Phys. C: Solid State Phys. 19, 5103 (1986).10.1088/0022-3719/19/26/011Google Scholar
10. Lee, K.-H. and Kim, H., Jpn. J. Appl. Phys. 37, 5265 (1998).10.1143/JJAP.37.5265Google Scholar
11. Alberta, E. F. and Bhalla, A. S., Mater. Lett. 40, 114 (1999).10.1016/S0167-577X(99)00058-0Google Scholar
12. Baba-kishi, K. Z., Tai, C. W., Wang, J., Choy, C. L., Chan, H. L. W. and Bhalla, A. S., J. Mater. Res. 17, 438 (2002).10.1557/JMR.2002.0061Google Scholar
13. Baba-kishi, K. Z., Tai, C. W., Choy, C. L. and Bhalla, A. S., Ferroelectrics 270, 1407 (2002).10.1080/00150190211203Google Scholar
14. Wang, J., Baba-kishi, K. Z., Chan, H. L. W., Choy, C. L., Tai, C. W. and Bhalla, A. S., Ferroelectrics 272, 2259 (2002).10.1080/00150190211569Google Scholar
15. Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 1245 (1982).10.1016/0025-5408(82)90159-3Google Scholar
16. Groves, P., Ferroelectrics 65, 67 (1985).10.1080/00150198508008960Google Scholar
17. Baba-kishi, K. Z., Cressey, G. and Cernik, R. J., J. Appl. Crystallogr. 25, 477 (1992).10.1107/S0021889892001110Google Scholar