No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
PbZr0.53Ti0.4703 doped with 0.6% at. of Gd2O3 has been produced following the traditional solid state reaction technique. The ferro-paraelectric transition temperature is reduced from 386 °C to 352 °C. Remnant polarization and coercive field measurements were made from the hysteresis loops obtained at 23 °C and at different applied electric fields up to a maximum of 17 kV/cm. Piezoelectric performance was studied in the 4 Hz to 4 MHz frequency range at 25 °C and the radial electromechanical coupling factor was determined. A detailed electrical conductivity study in the 30-450 °C temperature range is performed in a wide frequency interval. The different participating transport mechanisms are elucidated and the corresponding activation energies were determined by fitting the experimental data. In particular, in the 30 to 300 °C temperature interval, the ac conductivity follows Jonscher universal relaxation law.