Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:24:14.726Z Has data issue: false hasContentIssue false

Diamond Heteroepitaxial Lateral Overgrowth

Published online by Cambridge University Press:  24 February 2015

Y-H Tang
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320, U.S.A.
B. Bi
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320, U.S.A.
B. Golding
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320, U.S.A.
Get access

Abstract

A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. The internal stress is found to decrease as sample thickness increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schreck, M., Asmussen, J., Shikata, S., Arnault, J.-C., and Fujimori, N., MRS Bull. 39, 504 (2014).CrossRefGoogle Scholar
Nishinaga, T., Nakano, T., and Zhang, S., Jpn. J. Appl. Phys. 27, p. L964 (1988).Google Scholar
Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A. A., Jpn. J. Appl. Phys. 36, L899 (1997).CrossRefGoogle Scholar
Nakamura, S., Senoh, M., Nagahama, S.-I., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998).CrossRefGoogle Scholar
Ando, Y., Kuwabara, J., Suzuki, K., and Sawabe, A., Diam. Relat. Mater. 13, 1975 (2004).CrossRefGoogle Scholar
Washiyama, S., Mita, S., Suzuki, K., and Sawabe, A., Appl. Phys. Express 4, 095502 (2011).CrossRefGoogle Scholar
Bednarski, C., Dai, Z., Li, A-P, and Golding, B., Diam. Relat. Mater. 12, 241 (2003).CrossRefGoogle Scholar
Achard, J., Silva, F., Brinza, O., Bonnin, X., Mille, V., Issaoui, R., Kasu, M., and Gicquel, a., Phys. Status Solidi 206, 1949 (2009).CrossRefGoogle Scholar
Honda, Y., Iyechika, Y., Maeda, T., Miyake, H., Hiramatsu, K., Sone, H., and Sawaki, N., Jpn. J. Appl. Phys. 38, L1299 (1999).CrossRefGoogle Scholar
Von Kaenel, Y., Stiegler, L., Michler, J., and Blank, E., J. Appl. Phys. 81, 1726 (1997).CrossRefGoogle Scholar
Grimsditch, M. H. and Ramdas, A. K., Phys. Rev. B 11, 3139 (1975).CrossRefGoogle Scholar
Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, (Oxford, 1985), pp. 134141.Google Scholar
Grimsditch, M. H., Anastassakis, E., and Cardona, M., Phys. Rev. B 18, 901 (1978).CrossRefGoogle Scholar
Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., and Cardona, M., Solid State Commun. 88, 1053 (1993).CrossRefGoogle Scholar
Stehl, C., Fischer, M., Gsell, S., Berdermann, E., Rahman, M.S., Traeger, M., Klein, O., and Schreck, M., Appl. Phys. Lett. 103, 151905 (2013).CrossRefGoogle Scholar