Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:30:51.280Z Has data issue: false hasContentIssue false

Diameter Control in the Formation of Single-Wall Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

Rahul Sen
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
Y. Ohtsuka
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
T. Ishigaki
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
D. Kasuya
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
S. Suzuki
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
H. Kataura
Affiliation:
Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
Y. Achiba
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, JAPAN
Get access

Abstract

Single-wall carbon nanotubes (SWNTs) have been synthesized by laser ablation of Ni/Co catalyzed graphite target at 1200°C in argon gas. Raman spectroscopy has been used to study the effect of target position in the furnace and flow rate of argon gas on the diameter distribution of SWVNTs. It was found that yield of smaller diameter SWNTs relatively increases as target is placed away from the hot zone of the furnace. The relative yield of smaller diameter SWNTs decreases with increase in flow rate of the argon gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, 1996), p. 802.Google Scholar
2. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273, 483 (1996).Google Scholar
3. Qin, L-C., Iijima, S., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y., Chem. Phys. Lett. 268, 101 (1997).Google Scholar
4. Pimenta, M.A., Marucci, A., Brown, S.D.M., Matthews, M.J., Rao, A.M., Eklund, P.C., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S., J. Mater. Res. 13, 2396 (1998).Google Scholar
5. Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E. and Eklund, P.C., Phys. Rev. Lett. 80, 3779 (1998).Google Scholar
6. Kataura, H., Kimura, A., Ohtsuka, Y., Suzuki, S., Maniwa, Y., Hanyu, T. and Achiba, Y., Jpn. J. Appl. Phys. 37, L616 (1998).Google Scholar
7. Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G. and Dresselhaus, M.S., Science 275, 187 (1997).Google Scholar
8. Rao, A.M., Bandow, S., Richter, E. and Eklund, P.C., Thin Solid Films 331, 141 (1998).Google Scholar
9. Yu, J., Kalia, R.K. and Vashishta, P., J. Chem. Phys. 103, 6697 (1995)Google Scholar
10. Kasuya, D., Ishigaki, T., Suganuma, T., Ohtsuka, Y., Suzuki, S., Shiromaru, H., Achiba, Y. and Wakabayashi, T., European Physical Journal D (in press).Google Scholar