Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:37:44.938Z Has data issue: false hasContentIssue false

A DFT Study of B, N and BN Doped Graphene

Published online by Cambridge University Press:  04 June 2014

Pooja Rani
Affiliation:
Department of Physics, Panjab University, Chandigarh-160014, India.
V. K. Jindal
Affiliation:
Department of Physics, Panjab University, Chandigarh-160014, India.
Get access

Abstract

We have made a density functional study of the structural and electronic properties of B or N (individual) doped and BN co-doped graphene. The effect of doping has been studied by incorporating the doping concentration amount varying from 2% (one atom of the dopant in 50 host atoms) to 12 % atomic concentration in case of individual doping and from 4% (2 atoms of the dopant in 50 host atoms) to 24 % in case of co-doping, at the same time, altering different doping sites for the same concentration of substitutional doping. We made use of VASP (Vienna Ab-Initio Simulation Package) software based on density functional theory to perform all calculations. While the resulting geometries do not show much of distortion on doping, the electronic properties show a transition from semimetal to semiconductor with increasing number of dopants. The study shows that the BN doping introduces the band gap at the Fermi level unlike individual B and N doping which causes the shifting of Fermi level above or below the Dirac point. It is observed that not only concentration but position of B and N atoms in the hetero-structure also affects the value of band gap introduced.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S, Geim, A. K., Morozov, S. V. and Jiang, D., Science 306, 666669 (2004).CrossRefGoogle Scholar
Geim, A.K., Novoselov, K.S.. Nat. Mater., 6, 183191 (2007).CrossRefGoogle Scholar
Lee, Changgu, Wei, Xiaoding, Kysar, Jeffrey W., Hone, James, Science 321(5887), 385388(2008).10.1126/science.1157996CrossRefGoogle Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K.. Science, 320, 1308 (2008).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H. L., Zeitler, U., Maan, J.C., Boebinger, G. S., Kim, P., Geim, A.K.. Science, 315, 1379 (2007).CrossRefGoogle Scholar
Zhang, Y., Tan, Y- W., Stormer, H. L., Kim, P., Nature, 438, 201204 (2005).CrossRefGoogle Scholar
Schwierz, F., Nat. Nanotech. 5, 487496 (2010).CrossRefGoogle Scholar
Denis, Pablo A., Chem. Phy. Lett. 492, 251257 (2010).CrossRefGoogle Scholar
Wang, X., Li, X., Yoon, Y., Weber, P.K., Wang, H., Guo, J. and Dai, H., Sci. 324, 768771 (2009).10.1126/science.1170335CrossRefGoogle Scholar
Shemella, P. and Nayak, S.K., Appl. Phys. Lett. 94, 032101 (3pp) (2009).10.1063/1.3070238CrossRefGoogle Scholar
Wu, M., Cao, C. and Jiang, J. Z., Nanotechnology 21, 505202(6pp) (2010).CrossRefGoogle Scholar
Fan, Yingcai, Zhao, Mingwen, Wang, Zhenhai, Zhang, Xuejuan, and Zhang, Hongyu, App. Phys. Lett. 98, 083103 (2011).CrossRefGoogle Scholar
Rani, Pooja and Jindal, V. K., RSC Advances, 3, 802812 (2013).CrossRefGoogle Scholar
Rani, Pooja and Jindal, v. K., App. Nanosci. DOI 10.1007/s13204-013-0280-3.Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
Blöchl, P.E., Projector augmented-wave method, Phys. Rev. B 50, (1994).CrossRefGoogle ScholarPubMed
Bhandary, Sumanta and Sanyal, Biplab, Graphene-Boron Nitride Composite: A Material with Advanced Functionalities, in: Hu, Ning (Ed.), Composites and Their Properties, InTech, Rijeka, 2012, pp. 114.Google Scholar