No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 0.1-25 mN depending on the aspect ratio of the walls. A central-plastic-zone criterion is proposed in view of TEM images of indented walls and allows predicting the response deviation of a given wall knowing its width. The application of substrate patterning for optoelectronic devices is proposed in the perspective of eliminating residual dislocations appearing in mismatched structures.