Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:19:23.464Z Has data issue: false hasContentIssue false

Development of the Grain Size Distribution During the Crystallization of an Amorphous Solid

Published online by Cambridge University Press:  14 March 2011

Andreas Bill
Affiliation:
California State University Long Beach, Department of Physics & Astronomy, 1250 Bellflower Blvd., Long Beach, CA 90840, U.S.A.
Ralf B. Bergmann
Affiliation:
Bremen Institute for Applied Beam Technology (BIAS), Klagenfurter Str. 2, 28359 Bremen, Germany.
Get access

Abstract

We present an overview of the theory developed over the last few years to describe the crystallization of amorphous solids. The microstructure of the crystallizing solid is described in terms of the grain size distribution (GSD). We propose a partial differential equation that captures the physics of crystallization in random nucleation and growth processes. The analytic description is derived for isotropic and anisotropic growth rates and allows for the analysis of different stages of crystallization, from early to full crystallization. We show how the timedependence of effective nucleation and growth rates affect the final distribution. In particular, we demonstrate that for cases described by the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model applicable to a large class of crystallization processes a lognormal type distribution is obtained at full crystallization. The application of the theory to the crystallization of silicon thin films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergmann, R.B. and Bill, A., J. Cryst. Growth 310, 3135 (2008).Google Scholar
2. Teran, A.V., Bergmann, R.B. and Bill, A., Phys. Rev. B 82, 075319 (2010).Google Scholar
3. Teran, A.V., Bergmann, R.B. and Bill, A., Mater. Res. Soc. Symp. Proc. 1153, A0503 (2009).Google Scholar
4. Lokovic, K.S., Bergmann, R.B. and Bill, A., Mater. Res. Soc. Symp. Proc. 1245, A1607 (2010).Google Scholar
5. Brown, W.K. and Wohletz, K.H., J.Appl.Phys. 78, 2758 (1995); W.Fayad, C.V.Thompson, and H.J.Frost, Scr.Mater. 40, 1199(1999); P.R.Rios, ibid. 40, 665 (1999); C. Wang and G.Liu, ISIJ Int. 43, 774 (2003). Google Scholar
6. Coles, P. and Jones, B., Mon. Not. R. astr. Soc. 248, 1 (1991).Google Scholar
7. Kolmogorov, A.N., Dokl. Akad. Nauk. SSSR 31, 99 (1941).Google Scholar
8. Limpert, E., Stahel, W.A., and Abbt, M., Bioscience 51, 341 (2001).Google Scholar
9. Kumomi, H. in Growth, Characterization and Electronic Applications of Si-based thin films, edited by Bergmann, Ralf B. (Research Signpost, Trivandrum, India, 2002).Google Scholar
10. Bergmann, R.B., Shi, F.G., Queisser, H.J., and Krinke, J., Appl. Surf. Sci. 123-124, 376 (1998).Google Scholar
11. Bergmann, R.B. and Krinke, J., J. Cryst. Growth 177, 191 (1997).Google Scholar
12. Bergmann, R.B., Krinke, J., Strunk, H.P., and Werner, J.H., Mater. Res. Soc. Symp. Proc. 467, 325 (1997).Google Scholar
13. Bergmann, R.B., J. Cryst. Growth 165, 341 (1996).Google Scholar
14. Redner, S., Am. J. Phys. 58, 267 (1990).Google Scholar
15. Bergmann, R.B., Shi, F.G., and Krinke, J., Phys. Rev. Lett. 80, 1011 (1998).Google Scholar
16. Kumomi, H. and Shi, F.G., Phys. Rev. Lett. 82, 2717 (1999).Google Scholar
17. Thompson, C.V., Mater. Res. Soc. Symp. Proc. 106, 115 (1988); J. Appl. Phys. 58, 763(1985) Google Scholar
18. Pineda, E. and Crespo, D., J. Stat. Mech. 2007, P06007 (2007).Google Scholar
19. Kolmogorov, A.N., Izv. Akad. Nauk. SSSR, Ser. Mat. 1, 355 (1937).Google Scholar
20. Avrami, M., J. Chem. Phys. 7, 1103 (1939), 8, 212(1940); 9, 177 (1941).Google Scholar
21. Johnson, W. and Mehl, R., Trans AIME 135, 416 (1939); W. Anderson and R. Mehl, ibid. 161, 140(1945). Google Scholar
22. Brillantov, N.V., and Krapivsky, P.L., Phys. Rev. A 45, 2263 (1992); J. Stat. Phys. 75, 507 (1994). Google Scholar
23. Shi, F.G. and Seinfeld, J.H., Mater. Chem. Phys. 37, 1 (1994); J. Mater. Res. 6, 2091(1991), ibid. 6, 2097 (1991). Google Scholar
24. Bergmann, R.B., Shi, F.G., Queisser, H.J., and Krinke, J., Appl. Surf. Sci. Bergmann 123-124, 376 (1998).Google Scholar