Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T21:35:18.645Z Has data issue: false hasContentIssue false

Development of Stable a-Si/a-SiGe Tandem Solar Cell Submodules Deposited by a Very High Hydrogen Dilution at Low Temperature

Published online by Cambridge University Press:  10 February 2011

Masaki Shima
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan, [email protected]
Masao Isomura
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Eiji Maruyama
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Shingo Okamoto
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Hisao Haku
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Kenichiro Wakisaka
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Seiichi Kiyama
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Shinya Tsuda
Affiliation:
New Materials Research Center, SANYO Electric Co., Ltd., 1-18-13 Hashiridani, sHirakata, Osaka 573-8534, Japan
Get access

Abstract

The world's highest stabilized efficiency of 9.5% (light-soaked and measured by the Japan Quality Assurance Organization (JQA)) for an a-Si/a-SiGe superstrate-type solar cell submodule (area: 1200 cm2) has been achieved. This value was obtained by investigating the effects of very-high hydrogen dilution of up to 54:1 (= H2: SiH4) on hydrogenated amorphous silicon germanium (a-SiGe:H) deposition at a low substrate temperature (Ts). It was found that deterioration of the film properties of a-SiGe:H when Ts decreases under low hydrogen dilution conditions can be suppressed by the high hydrogen dilution. This finding probably indicates that the energy provided by hydrogen radicals substitutes for the lost energy caused by the decrease in Ts and that sufficient surface reactions can occur. In addition, results from an estimation of the hydrogen and germanium contents of a-SiGe:H suggest the occurrence of some kinds of structural variations by the high hydrogen dilution. A guideline for optimization of a-SiGe:H films for solar cells can be presented on the basis of the experimental results. The possibility of a-SiGe:H as a narrow gap material for a-Si stacked solar cells in contrast with microcrystalline silicon (μ c-Si:H) will also be discussed from various standpoints. At present, a-SiGe:H is considered to have an advantage over μ1 c-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staebler, D. L. and Wronski, C. R.: Appl. Phys. Lett. 31 (292) 1977.Google Scholar
[2] Terakawa, A., Shima, M., Sayama, K., Tarui, H., Nishiwaki, H. and Tsuda, S.: Jpn. J. Appl. Phys. 34 (1741) 1995.Google Scholar
[3] Nakamura, N., Takahama, T., Isomura, M., Nishikuni, M., Yoshida, K., Tsuda, S., Nakano, S., Ohnishi, M. and Kuwano, Y.: Jpn. J. Appl. Phys. 28 (1762) 1989.Google Scholar
[4] Shima, M., Terakawa, A., Isomura, M., Tanaka, M. and Tsuda, S.: Proc. 13th E.C. Photovoltaic Solar Energy Conf. (Nice, 1995) p.269.Google Scholar
[5] Shima, M., Terakawa, A., Isomura, M. and Tsuda, S., Jpn. J. Appl. Phys. 36 (2044) 1997.Google Scholar
[6] Wakisaka, K., Sayama, K., Tanaka, M., Isomura, M., Haku, H., Kiyama, S. and Tsuda, S.: Solar Energy Mat. and Solar Cells 49 (121) 1997.Google Scholar
[7] Matsuda, A., Koyama, M., Ikuchi, N., Imanishi, Y. and Tanaka, K.: Jpn. J. Appl. Phys. 25 (1986) L54.Google Scholar
[8] Shirafuji, J., Nagata, S., and Kuwagaki, M.: Jpn. J. Appl. Phys. 25 (336) 1986.Google Scholar
[9] Okamoto, S., Hishikawa, Y., Tsuge, S., Sasaki, M., Ninomiya, K., Nishikuni, M. and Tsuda, S.: Jpn. J. Appl. Phys. 33 (1773) 1994.Google Scholar
[10] Tanaka, K.: OPTOELECTRONICS 4 (143) 1989.Google Scholar
[11] Okamoto, S., Hishikawa, Y. and Tsuda, S.: Jpn. J. Appl. Phys. 35 (26) 1996.Google Scholar
[12] Tanaka, K. and Matsuda, A.: MRS Symp. Proc. Vol. 70 (245) 1986.Google Scholar
[13] Yang, L., Newton, J. and Fieselmann, B.: MRS Symp. Proc. Vol. 149 (497) 1989.Google Scholar
[14] Catalano, A., Arya, R. R., Bennett, M., Yang, L., Morris, J., Goldstein, B., Fieselmann, B., Newton, J. and Wiedeman, S.: Solar Cells, 27 (25) 1989.Google Scholar
[15] Fortmann, C. M.: Proc. of 21st IEEE PV Specialists Conference, Kissimmee, Florida (1990) 1493.Google Scholar
[16] Oda, S., Ishihara, S., Shibata, N., Takagi, S., Shirai, H., Miyauchi, A. and Shimizu, I.: J. Non-Cryst. Solids 77&78 (877) 1985.Google Scholar
[17] Wagner, S., Chu, V., Chen, D. S., Conde, J. P., Aljishi, S. and Smith, Z.: MRS Symp. Proc. Vol. 118 (623) 1988.Google Scholar
[18] Yang, L., Chen, L. and Catalano, A.: MRS Symp. Proc. Vol. 219 (259) 1991.Google Scholar
[19] Meier, J., Dubail, S., Fluckiger, R., Fischer, D., Keppner, H. and Shah, A.: Proc. of 1st WCPEC, Hawaii (1994) Vol. 1,409 Google Scholar
[20] Hishikawa, Y, Tsuge, S., Nakamura, N., Tsuda, S., Nakano, S. and Kuwano, Y: Appl.Phys. Lett. 57 (771) 1990.Google Scholar
[21] Hishikawa, Y, Nakamura, N., Tsuda, S., Nakano, S., Kishi, Y and Kuwano, Y: Jpn. J. Appl. Phys. 30 (1008) 1991.Google Scholar
[22] Sasaki, M., Okamoto, S., Hishikawa, Y., Tsuda, S. and Nakano, S.: Sol. Energy Mater. and Sol. Cells 34 (541) 1994.Google Scholar
[23] Fung, C. J., Gruntz, K. J., Ley, L., Cardona, M., Demond, F. J., Muller, G. and Kalbitzer, S.: J. Non-Cryst. Solids 35 &36 (255) 1980.Google Scholar
[24] Shimakawa, K.: J. Non-Cryst. Solids 43 (229) 1981.Google Scholar
[25] Pauling, L., The Nature of the Chemical Bond 3rd ed. (Cornell University Press, Ithaca, New York, 1960), p. 78 Google Scholar
[26] Takahama, T., Okamoto, S., Ninomiya, K., Nishikuni, M., Nakamura, N., Tsuda, S., Ohnishi, M., Nakano, S., Kishi, Y and Kuwano, Y: Tech. Dig. Int'l. PVSEC-5, Kyoto, Japan (1990) 375 Google Scholar
[27] Nishikuni, M., Ninomiya, K., Tanaka, M, Matsuoka, T., Nakano, S., Okuda, N., Shibuya, H., Ohnishi, M., Kishi, Y., Kuwano, Y and Ohara, S.: Tech. Dig. Int'l. PVSEC-4, Sydney, Australia (1989), vol. 1, 91 Google Scholar
[28] Bech, N., Meier, J., Fluckiger, J., Kroll, U., Selvan, J. A. Anna, Keppner, H., Shah, A. and Vanecek, M.: J. Non-Cryst. Solids 198–200 (90) 1996.Google Scholar
[29] Green, M. A. and Keevers, M. J.: Progress in Photovoltaics: Research and Applications 3, (189) 1995.Google Scholar
[30] Torres, P., Meier, J., Fluckiger, J., Kroll, U., Selvan, J. A. Anna, Keppner, H., Shah, A., Littlewood, S. D., Kelly, I. E. and Giannoules, P.: Appl. Phys. Lett. 69 (137) 1996.Google Scholar
[31] Platz, R., Meier, J., Fischer, D., Dubail, S. and Shah, A.: MRS Symp. Proc. Vol. 467 (699) 1997.Google Scholar
[32] Platz, R., Fischer, D., Hof, Ch., Dubail, S., Kroll, U., Meier, J., Fischer, D., Keppner, H. and Shah, A.: MRS Symp. Proc. Vol. 452 (877) 1996.Google Scholar
[33] Keppner, H., Torres, P., Meier, J., Platz, R., Fischer, D., Kroll, U., Dubail, S., Selvan, J. A. Anna, Vaucher, N. Pellaton, Ziegler, Y, Tschamer, R., Hof, Ch., Bech, N., Goetz, M., Pernet, P., Goerliter, M., Wyrsch, N., Veuille, J., Cuperus, J., Shah, A. and Pohl, J.: MRS Symp. Proc. Vol. 452 (865) 1996.Google Scholar