Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:25:24.676Z Has data issue: false hasContentIssue false

The Development of Solid Phase Regrowth on GaAs and its applications

Published online by Cambridge University Press:  21 February 2011

L. C. Wang*
Affiliation:
Electrical Engineering Department, Texas A&M University College Station, TX 77843-3128
Get access

Abstract

A solid phase regrowth process on GaAs has been observed in Pd- and Ni- based bi-layer structures, e.g. the Si/Ni, the Ge/Pd, the In/Pd, and the Sb/Pd structures. Due to the regrowth, uniform epitaxial layers of Ge, GaAs, InxGa1-xAs, and GaSbl-xAsx on GaAs substrates by solid phase reactions can achieved. The model of this regrowth process will be presented. Based on this regrowth mechanism, a series of non-spiking planar ohmic contacts on n and p type GaAs have been developed. Low contact resistivity in the range of mid 10−7 Ω-cm2 was obtained. The ohmic contact formation mechanism of these contacts will also be discussed. All the studies suggest that the ohmic behavior is a result of the formation of an n+ or p+ surface layer via solid phase reactions. The regrowth process has also been utilized to achieve compositional disordering of GaAs/AlGaAs superlattices, and low loss AlGaAs/GaAs waveguide has been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rideout, V. L., Solid-State Electron. 18, 541 (1975).Google Scholar
2. Piotrowska, A., Guivarch, A., and Pelous, G., Solid-State Electron. 26, 179 (1983).CrossRefGoogle Scholar
3. Shen, T. C., Gao, G. B., and Morkoc, H., J. Vac. Sci. Technol. B 10, 2113 (1992).CrossRefGoogle Scholar
4. Marshall, E.D., Chen, W.X., Wu, C.S., Lau, S.S., and Kuech, T.F., Appl. Phys. Lett. 47, 298(1985).CrossRefGoogle Scholar
5. Ballingall, J. M., Wood, C. E. C., and Eastman, L. F., J. Vac. Sci. Technol., B1(3), 675(1983).CrossRefGoogle Scholar
6 Lau, S. S. and Weg, W. F. van der, Chapter 12 in “Thin Film—Interdiffusion and Reactions”, edited by Poote, J. M., Tu, K. N. and Mayar, J. M. (John Wiley and Son, New York, 1978).Google Scholar
7. Marshall, E.D., Zhang, B., Wang, L.C., Jiao, P.F., Chen, W.X., Sawada, T., Lau, S.S., Kavanagh, K., and Kuech, T.F., J. Appl. Phys. 62, 942 (1987).CrossRefGoogle Scholar
8. Sands, T., Keramidas, V. G., Gronsky, R., and Washburn, J., Mat. Lett. 3, 409 (1986).Google Scholar
9. Wang, L. C., Zhang, B., Fang, F., Marshall, E. D., Lau, S. S., Sands, T., and Kuech, T. F., J. Mater. Res., 3, 922 (1988).CrossRefGoogle Scholar
10. Lau, S. S. and Weg, W. F. van der, Chapter 12 in “Thin Film, Interdiffusion and Reactions”, edited by Poote, J. M., Tu, K. N. and Mayar, J. M. (John Wiley and Son, New York, 1978).Google Scholar
11. Sands, T., Marshall, E. D., and Wang, L. C., J. Mat. Res., 3, 914(1988).Google Scholar
12. Marshall, E. D., Lau, S. S., Palmstrom, C. J., Sands, T., Schwarz, S.A., Harbison, J. P., Schwartz, C.L., and Florez, L. T., Proceedings of Materials Research Society Symposium on Chemistry in Semicondctor Heterosructure, April, 1989.Google Scholar
13. Onuma, Takeshi, Hirao, Takashi, and Sugawa, Toshio, J. Electrochem. Soc., 129, 837 (1982).CrossRefGoogle Scholar
14. Greiner, E. and Gibbons, J. F., Appl. Phys. Lett., 44,750 (1984).CrossRefGoogle Scholar
15. Lin, J.-C., Hsieh, K.-C., Schuls, K. J., and Chang, Y. A., J. Mater., Res., 3, 148(1988).CrossRefGoogle Scholar
16. Wang, L.C., Wang, X.Z., Hsu, S.N., Lau, S.S., Lin, P.S.D., Sands, T., Schwarz, S.A., Plumton, D.L., and Kuech, T.F., J. Appl. Phys. 69, 4363(1991).Google Scholar
17. Wang, L.C., Sands, T., Wang, X.Z. and Lau, S.S., Appl. Phys. Lett. 56, 2129 (1990).Google Scholar
18. Wright, S. L., Mark, R. F., Tiwari, S., Jackson, T. N., and Baratte, H., Appl. Phys. Lett. 49, 1545 (1986).Google Scholar
19. Ding, J., Washburn, J., Sands, T., and Keramidas, V. G., Inst. Phys. Conf. Ser. No. 83: Chapter 5, presented at Int. Symp. GaAs and Related Compounds, Las Vegas, Nevada, 1986.Google Scholar
20. Wang, L.C., Li, Y.Z., Kappes, M., Lau, S. S., Hwang, D. M., Schwarz, S. A., and Sands, T., Appl. Phys. Lett. 60, 3016 (1992).Google Scholar
21. Han, C.C., Wang, X.Z., Wang, L.C., Marshall, E.D., Lau, S.S., Schwarz, S.A., Palmstrom, C.J., Harbison, J.P., Florez, L.T., Potemski, R.M., Tichler, M.A., and Kuech, T.F., J. Appl. Phys. 68, 5714 (1990).CrossRefGoogle Scholar
22. Han, C.C., Wang, X.Z., Lau, S.S., Petemski, R.M., Tischler, M.A., and Kuech, T.F., Appl. Phys. Lett., 58 1617 (1991).CrossRefGoogle Scholar
23. Sands, T., Keramidas, V.G., Yu, A.J., Yu, K-M, Gronsky, R., and Washburn, J., J. Mater. Res., 2, 262 (1987).Google Scholar
24. Ph.D. Thesis, Han, C. C., Department of Electrical and Computer Engineering, University of California, San Diego, 1991.Google Scholar
25. Mead, C.A., Solid-State Electron., 9, 1023 (1966).CrossRefGoogle Scholar
26. Chang, L.L. and Freeouf, J.L., IBM Tech. Bull., 24, 4965 (1982).Google Scholar
27. Peppe, D. and Holonyak, N. Jr., J. Appl. Phys. 64, R93(1988).Google Scholar
28. Xia, W., Han, C.C., Pappert, S.A., Hsu, S.N., Guan, Z.F., Yu, P.K.L., and Lau, S.S., Appl. Phys. Lett. 58, 625(1991).Google Scholar
29. Xia, W., Yu, L.S., Guan, Z.F., Pappert, S.A., Yu, P.K.L., Schwarz, S.A., Pudensi, M.A.A., Florez, L.T., Harbison, J.P., and Lau, S.S., Appl. Phys. Lett. 61, 1269 (1992).Google Scholar