Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:10:58.211Z Has data issue: false hasContentIssue false

Development of Mid-IR Lasers for Laser Remote Sensing

Published online by Cambridge University Press:  01 February 2011

Alexander Soibel
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr, Pasadena, CA 91109
Kamjou Mansour
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr, Pasadena, CA 91109
Gary Spiers
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr, Pasadena, CA 91109
Siamak Forouhar
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr, Pasadena, CA 91109
Get access

Abstract

There is a need in NASA for development of mid-infrared (mid-IR) lasers, such as Quantum Cascade (QC) lasers, for in-situ and remote laser spectrometers. Mid-IR, compact, low power consumption laser spectrometers have a great potential for detection and measurements of planetary gases and biological important biomarker molecules such as H2O, H2O2, CH4, and many additional chemical species on Mars and other planets of Solar systems. Other applications of mid-IR QC lasers are in high power remote Laser Reflectance Spectrometer (LRS) instruments for future NASA outer solar system explorations. In LSR instruments, QC lasers will act as the illumination source for conducting active mid-IR reflectance spectroscopy of solidsurfaced objects in the outer Solar System. LRS instruments have the potential to provide an incredible amount of information about the compositions of surfaces in the outer Solar System. In this work, we will discuss our current effort at JPL to develop and improve the mid-IR QC lasers to a level that the laser performance, operational requirements and reliability will be compatible with the instruments demands for space exploration applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kosterev, A. A. and Tittel, F. K. IEEE J. Quantum Electron. 38, 582 (2002).Google Scholar
2 Faist, J. Capasso, F. Sivco, D. L. Sirtori, C. Hutchinson, A. L. and Cho, A. Y. Science 264, 553 (1994).Google Scholar
3 Capasso, F. Gmachl, C. Sivco, D. L. and Cho, A. Y. Physics Today 55, 34 (2002); F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, IEEE J. Quantum. Electron. 38, 511 (2002).Google Scholar
4 Sirtory, C. Page, H. Becker, C. and Ortiz, V. IEEE J. Quantum Electron. 38, 547 (2002).Google Scholar
5 Gmachl, C. Sivco, D. L. Colombelli, R. Capasso, F. and Cho, A. Y. Nature 415, 883 (2002).Google Scholar
6 Faist, J. Capasso, F. Sirtori, C. Sivco, D. L. Baillargeon, J. N. Hutchinson, A. L. Chu, S. G. and Cho, A. Y. Appl. Phys. Lett. 68, 3680 (1996).Google Scholar
7 Faist, J. Capasso, F. Sirtori, C. Sivco, D. L. Hutchinson, A. L. and Cho, A. Y. Appl. Phys. Lett. 67, 3057 (1995).Google Scholar
8 Faist, J. Gmachl, C. Capasso, F. Sirtori, C. Sivco, D. L. Baillargeon, J. N. and Cho, A. Y. Appl. Phys. Lett. 70, 2670 (1997).Google Scholar
9 Scamarcio, G. Capasso, F. Sirtori, C. Faist, J. Hutchinson, A. Sivco, D. and Cho, A. Science 276, 773 (1997).Google Scholar
10 Colombelli, R. Capasso, F. Gmachl, C. Hutchinson, A. L. Sivco, D. L. Tredicucci, A. Wanke, M. C., Sergent, A. M. and Cho, A. Y, Appl. Phys. Lett. 78, 2620 (2001).Google Scholar
11 Sirtori, C. Kruck, P. Barbieri, S. Collot, P. Nagle, J. Beck, M. Faist, J. and Oesterle, U. Appl. Phys. Lett. 73, 3486 (1998).Google Scholar
12 Gmachl, C. Capasso, F. Narimanov, E. E. Nöckel, J. U., Stone, A. D. Faist, J. Sivco, D. L. and Cho, A. Y. Science 280, 1556 (1998).Google Scholar
13 Paiella, R. Capasso, F. Gmachl, C. Sivco, D. L. Baillargeon, J. N. Hutchinson, A. L. Cho, A. Y., and Liu, H. C. Science 290, 1739 (2000).Google Scholar
14 Beck, M. Hofstetter, D. Aellen, T. Faist, J. Oesterle, U. Ilegems, M. Gini, E. and Melchior, H., Science 295, 301 (2002).Google Scholar
15 Kohler, R. Tredicucci, A. Beltram, F. Beere, H. E. Linfield, E. H. Davies, A. G. Ritchie, D. A., Iotti, R. C. and Rossi, F. Nature 417, 156 (2002).Google Scholar
16 Sharpe, S. W, Kelly, J. F. Hartman, J. S. Gmachl, C. Capasso, F. Sivco, D. L. Baillargeon, J. N., and Cho., A. Y., Opt. Lett. 22, 1396 (1998).Google Scholar
17 Webster, C. R. Flesch, G. J. Scott, D. C. Swanson, J. E. May, R. D. Woodward, W. S. Gmachl, C., Capasso, F. Sivco, D. L. Baillargeon, J. N. Hutchinson, A. L. and Cho, A. Y. Appl. Optics 40, 321 (2001).Google Scholar
18 Faist, J. Beck, M. Aellen, T. and Gini, E. Appl. Phys. Lett. 78, 147 (2001).Google Scholar
19In collaboration with RJM Semiconductors.Google Scholar