Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T05:20:43.607Z Has data issue: false hasContentIssue false

Development of Materials Informatics Tools and Infrastructure to Enable High Throughput Materials Design

Published online by Cambridge University Press:  12 January 2012

Michael P. Krein
Affiliation:
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Bharath Natarajan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Linda S. Schadler
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
L. C. Brinson
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B222, Evanston, IL 60208, U.S.A
Hua Deng
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B222, Evanston, IL 60208, U.S.A
Donghai Gai
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B222, Evanston, IL 60208, U.S.A
Yang Li
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Room B222, Evanston, IL 60208, U.S.A
Curt M. Breneman*
Affiliation:
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
*
*To whom correspondence should be addressed [email protected]
Get access

Abstract

Polymer nanocomposites (PNC) are complex material systems in which the dominant length scales converge. Our approach to understanding nanocomposite tradespace uses Materials Quantitative Structure-Property Relationships (MQSPRs) to relate molecular structures to the polar and dispersive components of corresponding surface tensions. If the polar and dispersive components of surface tensions in the nanofiller and polymer could be determined a priori, then the propensity to aggregate and the change in polymer mobility near the particle could be predicted. Derived energetic parameters such as work of adhesion, work of spreading and the equilibrium wetting angle may then used as input to continuum mechanics approaches that have been shown able to predict the thermomechanical response of nanocomposites and that have been validated by experiment. The informatics approach developed in this work thus enables future in silico nanocomposite design by enabling virtual experiments to be performed on proposed nanocomposite compositions prior to fabrication and testing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, A. C. and Fraser, T. R., J Anat Physiol. 2(2), 224242 (1868).Google Scholar
2. Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F. and Streich, M., J. Am. Chem. Soc. 85, 28172824 (1963).Google Scholar
3. Tropsha, A., Mol. Inf. 29(6-7), 476488 (2010).Google Scholar
4. Gramatica, P., QSAR Comb. Sci. 26(5), 694701 (2007).Google Scholar
5. Mattioni, B. E. and Jurs, P. C., J. Chem. Inf. Comput. Sci. 42(2), 232240 (2002).Google Scholar
6. Liu, A., Wang, X., Wang, L., Wang, H. and Wang, H., Eur. Polym. J. 43(3), 989995 (2007).Google Scholar
7. Schut, J., Bolikal, D., Khan, I. J., Pesnell, A., Rege, A., Rojas, R., Sheihet, L., Murthy, N. S. and Kohn, J., Polymer 48(20), 61156124 (2007).Google Scholar
8. Duce, C., Micheli, A., Starita, A., Tiné, M. R. and Solaro, R., Macromol. Rapid Commun. 27(9), 711715 (2006).Google Scholar
9. Katritzky, A. R., Sild, S., Lobanov, V. and Karelson, M., J. Chem. Inf. Comput. Sci. 38(2), 300304 (1998).Google Scholar
10. Fowkes, F. M., J. Phys. Chem. 67(12), 25382541 (1963).Google Scholar
11. Wang, M., Rubber Chem. Technol. 71(3), 520 (1998).Google Scholar
12. Keddie, J. L., Jones, R. A. L. and Cory, R. A., Faraday Discuss. 98, 219230 (1994).Google Scholar
13. Mattsson, J., Forrest, J. A. and Börjesson, L., Phys. Rev. E 62(4), 5187 (2000).Google Scholar
14. Fryer, D. S., Peters, R. D., Kim, E. J., Tomaszewski, J. E., de Pablo, J. J., Nealey, P. F., White, C. C. and Wu, W.-l., Macromolecules 34(16), 56275634 (2001).Google Scholar
15. Rittigstein, P., Priestley, R. D., Broadbelt, L. J. and Torkelson, J. M., Nat. Mater. 6(4), 278282 (2007).Google Scholar
16. Desai, T., J. Chem. Phys. 122(13), 134910 (2005).Google Scholar
17. (Diversified Enterprises, 2011), Vol. 2011.Google Scholar
18. Horng, P., Brindza, M. R., Walker, R. A. and Fourkas, J. T., J. Phys. Chem. C 114(1), 394402 (2009).Google Scholar
19. Fadeev, A. Y. and McCarthy, T. J., Langmuir 15(11), 37593766 (1999).Google Scholar
20. Janssen, D., De Palma, R., Verlaak, S., Heremans, P. and Dehaen, W., Thin Solid Films 515(4), 14331438 (2006).Google Scholar
21. (Chemical Computing Group, Inc., Montreal, Canada, 2008).Google Scholar
22. Mevik, B. and Wehrens, R., J. Stat. Soft. 18(2), 124 (2007).Google Scholar
23. Meyer, D., R News 1, 2326 (2001).Google Scholar