Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:33:13.929Z Has data issue: false hasContentIssue false

Development of Magneto-Optical Imaging for High-Throughput Characterization of Combinatorial Magnetic Thin Films

Published online by Cambridge University Press:  01 February 2011

X. R. Zhao
Affiliation:
National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
N. Okazaki
Affiliation:
National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Y. Konishi
Affiliation:
Neoark Corporation, 2–8–33 Wakamatsu-cho, Fuchu, Tokyo 183–0005, Japan
K. Akahane
Affiliation:
Neoark Corporation, 2–8–33 Wakamatsu-cho, Fuchu, Tokyo 183–0005, Japan
Z. Kuang
Affiliation:
Department of Applied Physics, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184–8588, Japan
T. Ishibashi
Affiliation:
Department of Applied Physics, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184–8588, Japan
K. Sato
Affiliation:
Department of Applied Physics, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184–8588, Japan
H. Koinuma
Affiliation:
National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226–8503, Japan
T. Hasegawa
Affiliation:
National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226–8503, Japan
Get access

Abstract

A new magneto-optical (MO) imaging system for high-throughput characterization of combinatorial magnetic thin films has been developed. The instrument allows us to measure both Faraday rotation and ellipticity maps at various wavelengths (400 nm∼1000 nm), different magnetic fields (0∼2000 G), and different temperatures (12 K∼300 K) for wide variety of materials. We used the magnetic circular dichroism (MCD) modulation technique to map MO properties, relatively free from substrate effects. The superiority of this system is that magnetic hysteresis curves of numerous specimens with different compositions prepared by the combinatorial technique can be simultaneously measured at one sweep of magnetic field, providing an efficient characterization method for combinatorial magnetic materials. We also confirmed that the system possesses enough spatial resolution and sensitivity for detecting MO signals of individual pixels contained in a combinatorial library.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Macek, W. M., U.S. Patent No. 3851973 (3 December 1974);Google Scholar
Macek, W. M. and Davis, D. T. Jr, Appl. Phys. Lett. 2, 67 (1966).Google Scholar
2. He, P., McGahan, W. A., Woollam, J. A., Segueda, F., McDaniel, T, and Do, H., J. Appl. Phys. 69, 4021 (1991).Google Scholar
3. Kawano, Y., Chiba, S., Shirai, H., Inoue, A., and Nagashima, A., Rev. Sci Instrum. 70 (1999) 1430; Rev. Sci Instrum. 70, 714 (1999).Google Scholar
4. Wu, S., Kaplan, S.G., Quijada, M., Sengupta, K., and Drew, H. D., Rev. Sci. Instrum. 66, 5559 (1995).Google Scholar
5. Puppin, E., Vavassori, P., and Callegaro, L., Rev. Sci. Instrum. 71, 1752 (2000).Google Scholar
6. Lee, J.-W., Jeong, J.-R., Kim, D.-H., Ahn, J. S., Kim, J., and Shin, S.-C., Rev. Sci. Instrum. 71, 3801 (2000).Google Scholar
7. Qiu, Z. Q., and Bader, S. D., Rev. Sci. Instrum. 71, 1243 (2000).Google Scholar
8. Helseth, L. E., Solovyev, A. G., Hansen, R. W., Il'yashenko, E. I., Baziljevich, M., and Johansen, T. H., Phys. Rev. B 66, 064405 (2002).Google Scholar
9. Silva, T. J. and Schultz, S., Rev. Sci. Instrum. 67, 715 (1996).Google Scholar
10. Kuhn, M., Schey, B., Biegel, W., and Stritzker, B., Eisenmenger, J. and Leiderer, P., Rev. Sci. Instrum. 70, 1761 (1999).Google Scholar
11. Tsui, F., and Ryan, P. A., Appl. Surf. Sci. 189, 333 (2002).Google Scholar
12. Fukumura, T., Yamada, Y., Tamura, K., Nakajima, K., Aoyama, T., Tsukazaki, A., Sumiya, M., Fuke, S., Segawa, Y., Chikyow, T., Hasegawa, T., Koinuma, H., and Kawasaki, M., Jpn. J. Appl. Phys. 42, L105 (2003).Google Scholar
13. Sato, K., Takeda, E., Akita, M., Yamaguchi, M., Takanashi, K., Mitani, S., Fujimori, H., Suzuki, Y., J. Appl. Phys. 86, 4985 (1999).Google Scholar
14. Sato, K., Kodama, A., Miyamoto, M., Petukhov, A.V., Takanashi, K., Mitani, S., Fujimori, H., Kirilyuk, A. and Rasing, Th., Phys. Rev. B 64, 184427 (2001).Google Scholar
15. Twardowski, A., Nawrochi, M., and Ginter, J., Phys. Stat. Sol., (b) 96, 497 (1979).Google Scholar
16. Saleh, B.E.A., Teich, M.C., Fundamentals of Phothnics, John Wiley & Sons, New York, 1991 (Chapter 6)Google Scholar