Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T22:28:03.889Z Has data issue: false hasContentIssue false

Development of Low Temperature Silicon Nitride and Silicon Dioxide Films by Inductively-Coupled Plasma Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
Plasma-Therm Inc., St. Petersburg, FL 33716
K. D. Mackenzie
Affiliation:
Plasma-Therm Inc., St. Petersburg, FL 33716
D. Johnson
Affiliation:
Plasma-Therm Inc., St. Petersburg, FL 33716
S. J. Pearton
Affiliation:
Dept. of Materials Sci. Eng., University of Florida, Gainesville FL 32611
F. Ren
Affiliation:
Dept. of Chemical Eng., University of Florida, Gainesville FL 32611
J. N. Sasserath
Affiliation:
Plasma-Therm Inc., St. Petersburg, FL 33716
Get access

Abstract

High-density plasma technology is becoming increasingly attractive for the deposition of dielectric films such as silicon nitride and silicon dioxide. In particular, inductively-coupled plasma chemical vapor deposition (ICPCVD) offers a great advantage for low temperature processing over plasma-enhanced chemical vapor deposition (PECVD) for a range of devices including compound semiconductors. In this paper, the development of low temperature (< 200°C) silicon nitride and silicon dioxide films utilizing ICP technology will be discussed. The material properties of these films have been investigated as a function of ICP source power, rf chuck power, chamber pressure, gas chemistry, and temperature. The ICPCVD films will be compared to PECVD films in terms of wet etch rate, stress, and other film characteristics. Two different gas chemistries, SiH4/N2/Ar and SiH4/NH3/He, were explored for the deposition of ICPCVD silicon nitride. The ICPCVD silicon dioxide films were prepared from SiH4/O2/Ar. The wet etch rates of both silicon nitride and silicon dioxide films are significantly lower than films prepared by conventional PECVD. This implies that ICPCVD films prepared at these low temperatures are of higher quality. The advanced ICPCVD technology can also be used for efficient void-free filling of high aspect ratio (3:1) sub-micron trenches.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Constantine, C., Barratt, C., Pearton, S. J., Ren, F. and Lothian, J. R., Appl. Phys. Lett. 61 2899 (1992).Google Scholar
2. Lee, J. W., Cho, H., Hays, C., Abernathy, C. R., Pearton, S. J., Shul, R. J. and Vawter, G. A. and Han, H., IEEE J. of Selected Topics in Quantum Electronics, 4, 557 (1998).Google Scholar
3. Ren, F., Lee, J. W., Abemathy, C. R., Pearton, S. J., Constantine, C., Barratt, C. and Shul, R. J., J. Vac. Sci. Technol. B 15, 983 (1997).Google Scholar
4. Pearton, S. J., Lee, J. W., Lambers, E. S., Mileham, J. R., Abernathy, C. R., Hobson, W. S. and Ren, F., J. Vac. Sci. Technol. B 14, 118 (1996).Google Scholar
5. IIIThomas, S., Ko, K. K. and Pang, S. W., J. Vac. Sci. Technol. A 13, 894 (1994).Google Scholar
6. Jung, K. B., Hong, J., Cho, H., Onishi, S., Johnson, D., Park, Y. D., Childress, J. R., and Pearton, S. J., J. Vac. Sci. Technol. A 17, 535 (1999).Google Scholar
7. Shul, R. J., McClellan, G. B., Briggs, R. D., Rieger, D. J., Pearton, S. J., Abernathy, C. R., Lee, J. W., Constantine, C. and Barratt, C., J. Vac. Sci. Technol. A 15, 633 (1997).Google Scholar
8. Lee, J. W., Lambers, E. S., Abernathy, C. R., Pearton, S. J., Shul, R. J., Ren, F., Hobson, W. S. and Constantine, C., Solid-State Electron. 42 A65–A73 (1998).Google Scholar
9. Shul, R. J., Wilson, C. G., Bridges, M. M., Han, J., Lee, J. W., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Zhang, L. and Lester, L. F., J. Vac. Sci. Technol. A 16, 1621 (1998).Google Scholar
10. Ren, F., Lee, J. W., Abernathy, C. R., Shul, R. J., Constantine, C. and Barratt, C., Semicond. Sci Tech. 12, 1154 (1997).Google Scholar
11. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y. and Markunas, R. J., J. Vac. Sci. Technol. A 4, 681 (1986).Google Scholar
12. Labelle, C. B., Limb, S. J. and Gleason, K. K., J. Appl. Phys. 82, 1784 (1997).Google Scholar
13. Limb, S. J., Labelle, C. B., Gleason, K. K., Edell, D. J. and Gleason, E. F. Appl. Phys. Lett. 68, 2810 (996).Google Scholar
14. Lapeyrade, M., Besland, M. P., C. Meva'a, Sibai, A. and Hollinger, G., J. Vac. Sci. Technol. A 17, 433 (1999).Google Scholar
15. Hahn, Y. B., Lee, J. W., Mackenzie, K. D., Johnson, D., Pearton, S. J. and Ren, F., Solid-State Electron. 42, 2017 (1998).Google Scholar
16. Hahn, Y. B., Lee, J. W., Mackenzie, K. D., Johnson, D., Hays, D., Abernathy, C. R. and Pearton, S. J., Electrochemical and Solid-State Lett. 1, 230 (1998).Google Scholar
17. Lee, J. W., Mackenzie, K. D., Johnson, D., Shul, R. J., Pearton, S. J., Abernathy, C. R. and Ren, F., Solid-State Electron. 42, 1031 (1998).Google Scholar
18. Lee, J. W., Abernathy, C. R., Pearton, S. J., Ren, F., Shul, R. J., Constantine, C. and Barratt, C., Solid-State Electron. 41, 829 (1997).Google Scholar
19. Ren, F., Lee, J. W., C. R. Abernathy; Pearton, S. J., Shul, R. J., Constantine, C. and Barratt, C., Semicond. Sci. Technol. 12, 1154 (1997).Google Scholar
20. Lee, J. W., Mackenzie, K. D., Johnson, D., Shul, R. J., Pearton, S. J., Abernathy, C. R. and Ren, F., Solid-State Electron. 42, 1021 (1998).Google Scholar
21. Kanicki, J., Mat. Res. Soc. Symp. Proc., 118, 671 (1988).Google Scholar