Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:01:59.725Z Has data issue: false hasContentIssue false

Development of Dual Multi-Phase Intermetallic Alloys Composed of Geometrically Close Packed Ni3X(X:Al and V) Structures

Published online by Cambridge University Press:  26 February 2011

Takayuki Takasugi
Affiliation:
[email protected], Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan, 81-72-254-9314, 81-72-254-9912
Yasuyuki Kaneno
Affiliation:
[email protected], Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Get access

Abstract

Dual multi-phase intermetallic alloys composed of Ni3Al (L12)+Ni3V (D022) phases were developed, based on the Ni3Al-Ni3Ti-Ni3V pseudo-ternary alloy system. High-temperature tensile deformation, fracture behavior, and compression and tension creep were investigated using polycrystalline and single crystalline materials. The alloys with such a novel microstructure show extremely high yield and tensile strength with good temperature retention, and also reasonable tensile ductility. Also, creep test conducted at high temperature showed extremely low creep rate and long creep rupture time. The obtained results are promising for the development of a new-type of high-temperature structural material exceeding conventional superalloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 12, 389 (2004).10.1016/j.intermet.2003.12.011Google Scholar
2. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Acta Mater. 54, 851 (2006).10.1016/j.actamat.2005.10.014Google Scholar
3. Shibuya, S., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics in press.Google Scholar
4. Land, R.W. and Nix, W.D., Acta Metall. 24, 469 (1976).10.1016/0001-6160(76)90068-7Google Scholar
5. Maldini, M., Harada, H., Koizumi, Y., Kobayashi, T. and Lupinc, V., Scripta Mater. 43, 637(2000).10.1016/S1359-6462(00)00473-5Google Scholar
6. Koizumi, Y., Harada, H., Kobayashi, T. and Yokokawa, T., Journal of the Japan Institute of Metals 69, 743(2005).10.2320/jinstmet.69.743Google Scholar
7. Hoshino, K., Rothman, S.J. and Averback, R.S., Acta Metall. 36, 1271 (1988).Google Scholar
8. Tanaka, K., Materia Japan 35, 380(1996).10.2320/materia.35.380Google Scholar
9. Pope, D.P. and Ezz, S.S., Int. Mater. Rev. 29, 136 (1984).10.1179/imr.1984.29.1.136Google Scholar
10. Stoloff, N.S., Int. Mater. Rev. 34, 153 (1989).10.1179/imr.1989.34.1.153Google Scholar
11. Yamaguchi, M. and Umakoshi, Y., Prog. Mater. Sci. 34, 1 (1990).Google Scholar
12. Suzuki, T., Mishima, Y. and Miura, S., ISIJ Int. 29, 1 (1989).Google Scholar
13. Hagihara, K., Nakano, T. and Umakoshi, Y., Acta Mater. 48, 1469 (2000).10.1016/S1359-6454(99)00447-4Google Scholar
14. Hagihara, K., Nakano, T. and Umakoshi, Y., Acta Mater. 51, 2623 (2003).10.1016/S1359-6454(03)00060-0Google Scholar
15. Hagihara, K., Tanaka, T., Nakano, T. and Umakoshi, Y., Acta Mater. 53, 5051 (2005).10.1016/j.actamat.2005.07.017Google Scholar