Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:43:16.994Z Has data issue: false hasContentIssue false

Development of Cross-Hatch Morphology During Growth of Lattice Mismatched Layers

Published online by Cambridge University Press:  18 March 2011

A. Maxwell Andrews
Affiliation:
Materials Department, University of California, Santa Barbara Santa Barbara, CA 93106-5050, U.S.A.
J.S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara Santa Barbara, CA 93106-5050, U.S.A.
A.E. Romanov
Affiliation:
A.F.Ioffe Physico-Technical Institute, Russian Academy of Sciences St. Petersburg 194021, Russia
M. Bobeth
Affiliation:
Technical University of DresdenDresden 01609, Germany
W. Pompe
Affiliation:
Technical University of DresdenDresden 01609, Germany
Get access

Abstract

An approach is developed for understanding the cross-hatch morphology in lattice mismatched heteroepitaxial film growth. It is demonstrated that both strain relaxation associated with misfit dislocation formation and subsequent step elimination (e.g. by step-flow growth) are responsible for the appearance of nanoscopic surface height undulations (0.1-10 nm) on a mesoscopic (∼100 nm) lateral scale. The results of Monte Carlo simulations for dislocation- assisted strain relaxation and subsequent film growth predict the development of cross-hatch patterns with a characteristic surface undulation magnitude ∼50 Å in an approximately 70% strain relaxed In0.25Ga0.75As layers. The model is supported by atomic force microscopy (AFM) observations of cross-hatch morphology in the same composition samples grown well beyond the critical thickness for misfit dislocation generation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burmeister, R.A., Pighini, G.P., and Greene, P.E., Trans. TMS-AIME 245, 587 (1969).Google Scholar
2. Chang, K.H., Gibala, R., Srolovitz, D.J., Bhattacharya, P.K., and Mansfield, J.F., J. Appl. Phys. 67, 4093 (1990).Google Scholar
3. Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiei, F.A., and Weir, B.E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
4. Springholz, G., Appl. Phys. Lett. 75, 3099 (1999).Google Scholar
5. Olsen, G.H., J. Cryst. Growth 31, 223 (1975).Google Scholar
6. Kishino, S., Ogirima, M., and Kurata, K., J. Electrochem. Soc. 119, 618 (1972).Google Scholar
7. Freund, L.B., MRS Bulletin 17 (7), 52 (1992).Google Scholar
8. Hsu, J. W. P., Fitzgerald, E. A., Xie, Y. H., Silverman, P. J., and Cardillo, M. J., Appl. Phys. Lett. 61, 1293 (1992).Google Scholar
9. Jonsdottir, F. and Freund, L. B., Mech. Mater. 20, 337 (1995).Google Scholar
10. Gao, H., J. Mech. Phys. Solids 42, 741 (1994).Google Scholar
11. Shiryaev, S. Y., Jensen, F., and Petersen, J. W., Appl. Phys. Lett. 64, 3305 (1994).Google Scholar
12. Lutz, M. A., Feenstra, R. M., LeGoues, F. K., Mooney, P. M., and Chu, J. O., Appl. Phys. Lett. 66, 724 (1995).Google Scholar
13. Krost, A., Bauer, G., and Woitok, J., Optical Characterization of Epitaxial Semiconductor Layers, eds. Bauer, G. and Richter, W. (New York: Springer, 1996), p.287.Google Scholar
14. Eshelby, J.D., Proc. Roy. Soc. A241, 376 (1957).Google Scholar
15. Romanov, A.E. and Vladimirov, V.I., in Dislocations in Solids, ed. Nabarro, F.R.N. (Elsevier, New York, 1992) Vol. 9, p. 191.Google Scholar