Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:51:39.886Z Has data issue: false hasContentIssue false

Developing a New Material for MEMS: Amorphous Diamond

Published online by Cambridge University Press:  17 March 2011

J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
M. P. de Boer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
D. A. LaVan
Affiliation:
Langer Research Lab, Massachusetts Inst. of Tech., Cambridge, MA 02139, U.S.A.
R. J. Hohlfelder
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
C. I. H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
M. T. Dugger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
M. Mitchell
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
R. G. Dunn
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
A. J. Magerkurth
Affiliation:
Dept. of Physics, Cornell Univ., Ithaca, NY 14853, U.S.A.
Get access

Abstract

Amorphous diamond is a new material for surface-micromachined microelectromechanical systems (MEMS) that offers promise for reducing wear and stiction of MEMS components. The material is an amorphous mixture of 4-fold and 3-fold coordinated carbon with mechanical properties close to that of crystalline diamond. A unique form of structural relaxation permits the residual stress in the material to be reduced from an as-deposited value of 8 GPa compressive down to zero stress or even to slightly tensile values. Irreversible plastic deformation, achieved by heat treating elastically strained structures, is also possible in this material. Several types of amorphous diamond MEMS devices have been fabricated, including electrostatically-actuated comb drives, micro-tensile test structures, and cantilever beams. Measurements using these structures indicate the material has an elastic modulus close to 800 GPa, fracture toughness of 8 MPa.m½, an advancing H2O contact angle of 84° to 94°, and a surface roughness of 0.1 to 0.9 nm R.M.S. on Si and SiO2, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gardos, M. N., in Tribology Issues and Opportunities in MEMS, edited by Bhushan, B. (Kluwer Academic Publishers, Netherlands, 1998) p. 341.Google Scholar
2. Maboudian, R. and Howe, R. T., J. Vac. Sci. Technol. B15, 1 (1997).Google Scholar
3. Björkman, H., Rangsten, P., and Hjort, K., Sensors and Actuators 78, 41 (1999).Google Scholar
4. Björkman, H., Rangsten, P., Hollman, P., and Hjort, K., Sensors and Actuators 73, 24 (1999).Google Scholar
5. Kohn, E., Gluche, P., and Adamschik, M., Diamond Relat. Mater. 8, 934 (1999).Google Scholar
6. Ertl, S., Adamschik, M., Schmid, P., Gluche, P., Flöter, A., and Kohn, E., Diamond Relat. Mater. 9, 970 (2000).Google Scholar
7. Shibata, T., Kitamoto, Y., Unno, K., and Makino, E., J. Microelectromech. Systems 9, 47 (2000).Google Scholar
8. Mao, M. Y., Wang, T. P., Xie, J. F., and Wang, W. Y., Proc. IEEE Micro Electro Mechanical Systems 1995, Amsterdam, Netherlands, p. 392.Google Scholar
9. Aslam, M. and Schulz, D., Transducers '95 and Eurosensors IX, Stockholm, Sweden, June 2529, 1995.Google Scholar
10. Hunn, J. D., Withrow, S. P., White, C. W., Clausing, R. E., and Heatherly, L., Appl. Phys. Lett. 65, 3072 (1994).Google Scholar
11. Niedermann, Ph., Hänni, W., Blanc, N., Christoph, R., and Burger, J., J. Vac. Sci. Technol. A14, 1233 (1996).Google Scholar
12. Ramesham, R., Thin Solid Films 340, 1 (1999).Google Scholar
13. Auciello, O., Krauss, A. R., Gruen, D. M., Busman, H. G., Meyer, E. M., Tucek, J., Sumant, A., Jayatissa, A., Moldovan, N., Mancini, D. C., and Gardos, M. N., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, edited by Boer, M. P. de, Heuer, A. H., Jacobs, S. J., and Peeters, E. (Mater. Res. Soc. Symp. Proc. 605, Warrendale, PA, 2000) p. 73.Google Scholar
14. Friedmann, T. A. and Sullivan, J. P., Method of Forming a Stress Relieved Amorphous Tetrahedrally-Coordinated Carbon Film, U.S. patent no. 6,103,305 (Aug. 15, 2000).Google Scholar
15. Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M., and Parrinello, M., Phys. Rev. Lett. 76 768 (1996); P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B 59, 733 (1999).Google Scholar
16. Friedmann, T. A., Sullivan, J. P., Knapp, J. A., Tallant, D. R., Follstaedt, D. M., Medlin, D. L., and Mirkarimi, P. B., Appl. Phys. Lett. 71, 3820 (1997).Google Scholar
17. Sullivan, J. P., Friedmann, T. A., and Baca, A. G., J. Electron. Mater. 26, 1021 (1997).Google Scholar
18. Friedmann, T. A., McCarty, K. F., Barbour, J. C., Siegal, M. P., and Dibble, D. C., Appl. Phys. Lett. 68, 1643 (1995).Google Scholar
19. Sullivan, J. P., Friedmann, T. A., Dunn, R. G., Stechel, E. B., Schultz, P. A., Siegal, M. P., and Missert, N., in Covalently Bonded Disordered Thin Film Materials, edited by Siegal, M. P., Milne, W. I., and Jaskie, J. E. (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA 1998) p. 97.Google Scholar
20. LaVan, D. A., Hohlfelder, R. J., Sullivan, J. P., Friedmann, T. A., Mitchell, M., and Ashby, C. I. H., in Amorphous and Nanostructured Carbon, edited by Sullivan, J. P., Robertson, J., Zhou, O., Allen, T. B., and Coll, B. F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000) p. 465.Google Scholar
21. Friedmann, T. A., Sullivan, J. P., LaVan, D. A., Buchheit, T. E., Knapp, J. A., Hohlfelder, R. J., and Mitchell, M., presented in Symposium W: The Limits of Strength in Theory and Practice (2000 Fall Meeting of the Mater. Res. Soc., Boston, MA, Nov. 27 - Dec. 1, 2000).Google Scholar
22. Weiss, P., Science News 158, 56 (2000).Google Scholar
23. Dugger, M. T., Senft, D. C. and Nelson, G. C. in Microstructure and Tribology of Polymer Surfaces, edited by Tsukruk, V.V. and Wahl, K.J. (American Chemical Society, Washington, DC, 1999), p. 455.Google Scholar