Article contents
Developing a New Material for MEMS: Amorphous Diamond
Published online by Cambridge University Press: 17 March 2011
Abstract
Amorphous diamond is a new material for surface-micromachined microelectromechanical systems (MEMS) that offers promise for reducing wear and stiction of MEMS components. The material is an amorphous mixture of 4-fold and 3-fold coordinated carbon with mechanical properties close to that of crystalline diamond. A unique form of structural relaxation permits the residual stress in the material to be reduced from an as-deposited value of 8 GPa compressive down to zero stress or even to slightly tensile values. Irreversible plastic deformation, achieved by heat treating elastically strained structures, is also possible in this material. Several types of amorphous diamond MEMS devices have been fabricated, including electrostatically-actuated comb drives, micro-tensile test structures, and cantilever beams. Measurements using these structures indicate the material has an elastic modulus close to 800 GPa, fracture toughness of 8 MPa.m½, an advancing H2O contact angle of 84° to 94°, and a surface roughness of 0.1 to 0.9 nm R.M.S. on Si and SiO2, respectively.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
- 10
- Cited by