Article contents
Detonation in Shocked Homogeneous High Explosives
Published online by Cambridge University Press: 10 February 2011
Abstract
We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are i) the initiation of shock compressed high explosives after an induction period, ii) thermal explosion of shock-compressed and/or reacting materials, and iii) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 5
- Cited by