Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:49:35.675Z Has data issue: false hasContentIssue false

Deterministic Synthesis of ZnO Nanorods

Published online by Cambridge University Press:  01 February 2011

Y. W. Heo
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32606
V. Varadarajan
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32606
M. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32606
K. Kim
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32606
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32606
P. H. Fleming
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831
D. P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32606
Get access

Abstract

The deterministic growth of ZnO nanorods using molecular beam epitaxy is reported. The process is catalyst-driven, as single crystal ZnO nanorod growth is realized via nucleation on Ag islands that are distributed on a SiO2-terminated Si substrate surface. Growth occurs at substrate temperatures on the order of 300-500°C. The nanorods exhibit diameters of 15-40 nm and lengths in excess of 1 μm. Nanorod placement can be predefined via location of metal catalyst islands or particles. This, coupled with the relatively low growth temperatures needed, suggests that ZnO nanorods could be integrated on device platforms for numerous applications, including chemical sensors and nanoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nanotechnology,” ed. by Timp, G., (Springer-Verlag, New York, 1998).Google Scholar
2. Wu, Y. and Yang, P., Chem Mater. 12, 605 (2000).Google Scholar
3. Morales, A. M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
4. Shi, W. S., Zheng, Y. F., Wang, N, Lee, C. S., and Lee, S. T., J. Vac. Sci. Technol. B 19, 1115 (2001).Google Scholar
5. Kim, G. T., Muster, J., Krstic, V., Park, J. G., Park, Y. W., Roth, S., and Burghard, M., Appl. Phys. Lett. 76, 1875 (2000).Google Scholar
6. Stone, N. J. and Ahmed, H., Appl. Phys. Lett. 73, 2134 (1998).Google Scholar
7. Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
8. Huang, Michael H., Mao, Samuel, Feick, Henning, Yan, Haoquan, Wu, Yiying, Kind, Hannes, Weber, Eicke, Russo, Richard, and Yang, Peidong, Science 292, 1897 (2001).Google Scholar
9. Zhang, H. Z., Kong, Y. C., Wang, Y. Z., Du, X., Bai, Z. G., Wang, J. J., Yu, D. P., Ding, Y., Hang, Q. L. and Feng, S. Q., Solid State Comm. 109, 677 (1999).Google Scholar
10. Zheng, M. J., Zhang, L. D., Li, G. H., Zhang, X. Y., and Wang, X. F., Appl. Phys. Lett. 79, 839 (2001).Google Scholar
11. Kovtyukhova, Nina I., Martin, Benjamin R., Mbindyo, Jeremiah K. N., Smith, Peter A., Razavi, Baharak, Mayer, Theresa S., and Mallouk, Thomas E., J. Phys. Chem. B 105, 8762 (2001).Google Scholar
12. Pan, Z. W., Dai, Z. R., and Wang, Z. L., Science 291, 1947 (2001).Google Scholar
13. Look, D. C., Hemsky, J. W., and Sizelove, J. R., Phys. Rev. Lett. 82, 2552 (1999).Google Scholar
14. Hutson, A. R., Phys. Rev. 108, 222 (1957).Google Scholar
15. Kang, W. P. and Kim, C. K., Sensors and Actuators B 13-14, 682 (1993).Google Scholar
16. Pol, F. C. M. Van de, Ceramic Bulletin 69, 1959 (1990).Google Scholar
17. Wong, E. M. and Searson, P. C., Appl. Phys. Lett. 74, 2939 (1999).Google Scholar
18. Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 75, 980 (1999).Google Scholar
19. Hess, K. and Iafrate, G. J., Proceedings of the IEEE 76, 519 (1988).Google Scholar
20. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
21. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P., Adv. Mater. 13, 113 (2001).Google Scholar
22. Tang, C. C., Fan, S. S., Chapelle, M. L. de la, and Li, P., Chem. Phys. Lett. 333, 12 (2001).Google Scholar
23. Li, Y., Meng, G. W., Zhang, L. D., and Phillipp, F., Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
24. Hulteen, J. C. and Martin, C. R., J. Mater. Chem. 7, 1075 (1997).Google Scholar
25. Lee, S. T., Wang, N., and Lee, C. S., Mater. Sci. Engr A 286, 16 (2000).Google Scholar
26. Liang, C. H., Meng, G. W., Wang, G. Z., Wang, Y. W., Zhang, L. D., and Zhang, S. Y., Appl. Phys. Lett. 78, 3202 (2001).Google Scholar
27. Vellinga, W. P. and Th, J.. Hosson, M. De, Acta Mater. 45, 933 (1997).Google Scholar
28. Xu, S. Y., Ong, C. K., You, L. P., Li, J. and Wang, S. J., Physica C 341-348, Part 4, 2345 (2000).Google Scholar
29. Sakurai, K., Iwata, D., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys. 38, 2606 (1999).Google Scholar
30. Johnson, M. A. L., Fujita, S., Rowland, W. H. Jr, Hughes, W. C., Cook, J. W. Jr, and Schetzina, J. F., J. Electronic Mater. 25, 855 (1996).Google Scholar
31. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
32. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. K., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar