No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
With the semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant (low-k) materials to replace traditional dense SiO2 based insulators. In order to survive the multi-step integration process and provide reliable material and structure for the desired integrated circuit (IC) functions, the new low-k materials have to be mechanically strong and stable. Thus the material selection and mechanical characterization are vital in the successful development of next generation low-k dielectrics. A new class of low-k dielectric materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus measurements of the zeolite thin films are found to be significantly higher than that of other porous silicates with similar porosity and dielectric constants. Correlations of the mechanical, microstructural and electrical properties are discussed in detail.