Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T07:55:23.041Z Has data issue: false hasContentIssue false

Determination of the Mechanical Behaviour of Thin Films on Substrate Systems from Micromechanical Experiments

Published online by Cambridge University Press:  22 February 2011

M. Ignat
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, E.N.S.E.E.G., BP. 75, 38402 Saint Martin d'Héres, France
P. Scafidi
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, E.N.S.E.E.G., BP. 75, 38402 Saint Martin d'Héres, France
E. Duloisy
Affiliation:
LETI Couches Minces OPtiques, Av. des Martyrs, 85XF 38041 Grenoble, France
J. Dijon
Affiliation:
LETI Couches Minces OPtiques, Av. des Martyrs, 85XF 38041 Grenoble, France
Get access

Abstract

Micromechanical tensile experiments in a Scanning Electron Microscope (SEM) allowed us to identify and follow the activation of a variety of different deformation mechanisms, on several sorts of films on substrate systems. The investigated systems consisted of SiO2 and YF3 films deposited on copper and aluminium substrates, with or without an interlayer. The experimental results show that the mechanical response of the films differs, in particular, with respect to the interface response: the cracking activity will depend on the film adhesion. An attempt is made to relate the microstructural parameters of the assembled materials with the observed mechanisms, through models which are based on the shear lag formalism. Critical parameters of the systems under stress are determined and compared to theoretical calculations: critical stresses and strains for cracking, stress transfer lengths, interfacial fracture energies. The approach gives some insights on the mechanical response of films on substrate systems submitted to a tensile state of stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Hoffman, R.W.; in “Physics of thin Films” edited by Hass, G., Thun, R.E., Academic Press, Vol.3, p.211, New York 1955.Google Scholar
2- Noyan, I.C., Sheikh, G.; in “Thin Films: Stresses and Mechanical Properties IV3 edited by: Townsend, P.H., Weihs, T., Sanchez, J.E. and Børgesen, P. (MRS Symp. Proc., Vol. 308; MRS 1993) p.3.Google Scholar
3- Berry, B.S., Pritchet, W.C.; in “Mechanical Behavior of Materials and Structures in Microelectronics” edited by Suhir, E., Cammarata, R.C., Chung, D.L. and Jono, M. (MRS Symp. Proc., Vol. 226; MRS 1991) p.179.Google Scholar
4- Nix, W.D.; Metallurgical Transactions, 20A, 2217 (1989).CrossRefGoogle Scholar
5- Flinn, P.A.; in “Stress-induced Phenomena in Metalliztion” edited by Li, C., Ma, P. To and Ho, P. (AIP Conf. Proc. 263, Amer. Inst. of Phys. New-York, 1992) p.73.Google Scholar
6- Flinn, P.A.; in “Thin Films: Stresses and Mechanical Properties II” edited by: Doerner, M.F., Oliver, W.C., Pharr, G.M. and Brotzen, F.R. (MRS Symp. Proc., Vol. 188; MRS 1990) p.3.Google Scholar
7- Scafidi, P., Ignat, M., Dupeux, M.; in “Thin Films: Stresses and Mechanical Properties IV” edited by: Townsend, P.H., Weihs, T., Sanchez, J.E. and Borgesen, P. (MRS Symp. Proc., Vol. 308; MRS 1993) p.285.Google Scholar
8- Ignat, M., Armann, A., Moberg, L. and Sibieude, F.; Surf. Coat. Technol., 49, 514 (1991).CrossRefGoogle Scholar
9- Ashby, M.F., Jones, D.R.H.; “Engineering Materials 1Pergamon Press. Oxford G.B. (1981).Google Scholar
10- Aveston, J., Cooper, G.A., Kellly, A.; “The Properties of Fiber Composites” (IPC Sci. Technol., Press, 1971).Google Scholar
11- Taya, M., Arsenault, R.J.; “Metal Matrix Composites, Thermomechanical Behavior”, Pergamon Press (1989).Google Scholar
12- Hu, M.S., Evans, A.G.; Acta Metall., 39, 1061 (1991).Google Scholar
13- Agrawal, D.C., Ray, R.; Acta Metall., 37, 1265 (1989).CrossRefGoogle Scholar
14- Chen, W.T., Nelson, C.W.; IBM J. Res. Devel., 23, 179 (1979).CrossRefGoogle Scholar
15- Schadler, L.S., Noyan, I.C.; in “Thin Films, Stresses and Mechanical Properties III” edited by Nix, W.D., Bravman, J.C., Artg, E. and Freund, L.B. (MRS Symp. Proc., Vol. 239, MRS 1992) p.151.Google Scholar
16- Chow, T.S., Liu, C.A., Penwell, R.C.; J. Polymer Sc., 14, 1305 (1976).Google Scholar
17- Davutuglu, A., Aksay, I.A.; in “Surfaces and Interfaces in Ceramic and Ceramic Metal Systems” edited by University of Berkeley, California (1988) p.641.Google Scholar
18- Timoshenko, S.P., Gere, J.M.; “Theory of Elastic Stability” (Mc Graw Hill, NY 1961, 2nd edition).Google Scholar
19- Flinn, P.A.; in “Thin Films, Stresses and Mechanical Properties” edited by Brauman, J.C., Nix, W.D., Bamem, D. and Smith, D.A. (MRS Symp. Proc., Vol.130, MRS 1989) p.41.Google Scholar
20- Bhushan, B., Murarka, S.P., Gerlach, J.; J. Vac. Sc. Technol. B8, 1068 (1990).CrossRefGoogle Scholar
21- Scafidi, P.; Unpublished work (1993).Google Scholar
22- Barbier, S.; “Microindentations de multicouches destinées à l'optique laser” Internal Report LETI; Couches Minces Optiques (1993).Google Scholar
23- Hondros, E.D.; Inst. Phys. Conf. Ser., 75, 121 (1986).Google Scholar
24- Swenson, D.O., Rau, C.A.; Int. Journ. of Fracture Mech., 6, 357 (1970).CrossRefGoogle Scholar
25- He, M.Y., Hutchinson, J.W.; Trans. ASME, 56, 270 (1989).CrossRefGoogle Scholar
26- Gupta, V., Argon, A.S., Cornie, J. A.; Joum. Mater. Sc., 24, 2031 (1989).CrossRefGoogle Scholar
27- Mahox, D.M.; in “Deposition Technology for FIlms and Coatings”, edited by Bunshah, R.F., N.Y. (1982) p.63.Google Scholar
28- Reimanis, I.E., Dalgleish, B.J., Brahy, M., Rtihle, M., Evans, A.G.; Acta Metall., 38, 2645 (1990).CrossRefGoogle Scholar