Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-06T08:47:53.070Z Has data issue: false hasContentIssue false

Determination of the Internal Electric Field in the Electrooptic Active Layer of Multilayer Polymer Stacks

Published online by Cambridge University Press:  10 February 2011

S. Grossmann
Affiliation:
Darmstadt University of Technology, Institute of Physical Chemistry, Petersenstraβe 20, 64287 Darmstadt, Germany, [email protected]
T. Weyrauch
Affiliation:
Darmstadt University of Technology, Institute of Physical Chemistry, Petersenstraβe 20, 64287 Darmstadt, Germany, [email protected]
W. Haase
Affiliation:
Darmstadt University of Technology, Institute of Physical Chemistry, Petersenstraβe 20, 64287 Darmstadt, Germany, [email protected]
Get access

Abstract

We report on a method to investigate the inhomogeneous distribution of an electric dc field in multilayer polymer stacks. In situ electroabsorption (EA) measurements are applied in order to estimate the local electric fields in double layer polymer films. The observed time dependent behaviour is compared with a model equivalent circuit. The results indicate that besides the relation of ohmic resistivities and capacities of the different polymer layers in the investigated systems also the influence of the electric properties of polymer/electrode and polymer/polymer interfaces must be considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Singer, K. D. and Andrews, J. H., in Molecular Nonlinear Optics: Materials Physics and Devices, Ed. Zyss, J. (Academic Press, Inc., San Diego, 1994).Google Scholar
[2] Page, R. H., Jurich, M. C., Sen, A., Twieg, R. J., Swalen, J. D., Bjorklund, G. C. and Wilson, C. G., J. Opt. Soc. Am. B 7, pp 12391250, (1990).10.1364/JOSAB.7.001239Google Scholar
[3] Girton, D. G., Anderson, W. W., Marley, J. A., Van Eck, T. E., Ermer, S., in Organic Thin Films for Photonics Applications, Vol.21, (Optical Society of America, Washington DC, 1995), pp. 470473.Google Scholar
[4] Park, H., Hwang, W. - Y. and Kim, J. - J., Appl. Phys. Lett. 70 (21), pp. 27962798, (1997).Google Scholar
[5] Blinov, L. M., Palto, S. P., Tevosov, A. A., Barnik, M. I., Weyrauch, T., Haase, W., Mol. Mat., 5, pp. 311338, (1995).Google Scholar
[6] Barnik, M. I., Blinov, L. M., Weyrauch, T., Palto, S., Tevosov, A. A. and Haase, W., in Polymers for Second-Order Nonlinear Optics. Ed. Lindsay, G. A., Singer, K. D., ACS Symposium Series 601, (Am. Chem. Soc., Washington DC, 1995), pp. 288303.Google Scholar
[7] Großmann, S., Weyrauch, T., Saal, S. and Haase, W., Optical Materials, in print.Google Scholar
[8] see van Turnhout, e.g. J., in Electrets, Ed. Sessler, G. M., Topics in Applied Physics, Vol.33, (Springer, Berlin, 1987), pp. 81215.Google Scholar