Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:22:37.639Z Has data issue: false hasContentIssue false

Determination of the Core-structure of Shockley Partial Dislocations in 4H-SiC

Published online by Cambridge University Press:  01 February 2011

Yi Chen
Affiliation:
[email protected], Stony Brook University, Materials Science and Engineering, 314 Old Engineering, Stony Brook University, Stony Brook, NY, 11794-2275, United States
Ning Zhang
Affiliation:
[email protected], Stony Brook University, Department of Materials Science and Engineering, Stony Brook, NY, 11794-2275, United States
Xianrong Huang
Affiliation:
[email protected], Brookhaven National Laboratory, National Synchrotron Light Source II, Upton, NY, 11973-5000, United States
Joshua D Caldwell
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375-5320, United States
Kendrick X Liu
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375-5320, United States
Robert E Stahlbush
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375-5320, United States
Michael Dudley
Affiliation:
[email protected], Stony Brook University, Department of Materials Science and Engineering, Stony Brook, NY, 11794-2275, United States
Get access

Abstract

Synchrotron x-ray topographs taken using basal plane reflections indicate that the electron-hole recombination activated Shockley partial dislocations in 4H silicon carbide bipolar devices appear as either white stripes with dark contrast bands at both edges or dark lines. In situ electroluminescence observations indicated that the mobile partial dislocations correspond to the white stripes in synchrotron x-ray topographs, while immobile partial dislocations correspond to the dark lines. Computer simulation based on ray-tracing principle indicates that the contrast variation of the partial dislocations in x-ray topography is determined by the position of the extra atomic half planes associated with the partial dislocations lying along their Peierls valley directions. The chemical structure of the Shockley partial dislocations can be subsequently determined unambiguously and non-destructively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lendenmann, H., Dahlquist, F., Johansson, N., Soderholm, R., Nilsson, P. A., Bergman, J. P., and Skytt, P., Mater. Sci. Forum 353-356, 727 (2001)Google Scholar
[2] Galeckas, A., Linnros, J., and Pirouz, P., Appl. Phys. Lett. 81, 883 (2002)Google Scholar
[3] Weeks, J. D., Tully, J. C., and Kimerling, L. C., Phys. Rev. B 12, 3286 (1975).Google Scholar
[4] Sumi, H., Phys. Rev. B 29, 4616 (1984).Google Scholar
[5] Ha, S., Skowronski, M., Sumakeris, J. J., Paisley, M. J., and Das, M. K., Phys. Rev. Lett. 92, 175504 (2004)Google Scholar
[6] Lambrecht, W. R.L. and Miao, M. S., Phys. Rev. B 73, 155312 (2006)Google Scholar
[7] Twigg, M. E., Stahlbush, R. E., Fatemi, M., Arthur, S. D., Fedison, J. B., Tucker, J. B. and Wang, S, Appl. Phys. Lett. 82, 2410 (2003)Google Scholar
[8] Savini, G., Heggie, M. I., and Oberg, S., Farad. Disc. 134, 353 (2007)Google Scholar
[9] Ha, S., Benamara, M., Skowronski, M., and Lendenmann, H., Appl. Phys. Lett. 83, 4957 (2003)Google Scholar
[10] Ning, X. J. and Pirouz, P., J. Mater. Res. 11, 884 (1996)Google Scholar
[11] Liu, K.X., Stahlbush, R. E., Hobart, K. B., and Sumakeris, J. J., Mater. Sci. Forum 527-529, 387 (2006)Google Scholar
[12] Vetter, W. M., Tsuchida, H., Kamata, I., and Dudley, M., J. Appl. Cryst. 38, 442 (2005)Google Scholar
[13] Chen, Y., Dudley, M., Sanchez, E. K. and MacMillan, M. F., Appl. Phys. Lett. 91, 071917 (2007)Google Scholar
[14] Chen, Y. and Dudley, M., Appl. Phys. Lett. 91, 141918 (2007)Google Scholar
[15] Stahlbush, R. E., Fedison, J. B., Arthur, S. D., Rowland, L. B., Kretchmer, J. W. and Wang, S., Mater. Sci. Forum 389-393, 427 (2002)Google Scholar
[16] Ohno, T., Yamaguchi, H., Kuroda, S., Kojimaa, K., Suzuki, T. and Arai, K., J. Cryst. Growth 260, 209 (2004)Google Scholar
[17] Jacobson, H., Birch, J., Yakimova, R., Syvajarvi, M., Bergman, J. P., Ellison, A., Tuomi, T., and Janzen, E., J. Appl. Phys. 91, 6354 (2002)Google Scholar
[18] Chen, Y., Dudley, M., Liu, K. X., and Stahlbush, R. E., Appl. Phys. Lett. 90, 171930 (2007)Google Scholar
[19] Caldwell, J. D., Stahlbush, R. E., Hobart, K. D., Glembocki, O. J., and Liu, K. X., Appl. Phys. Lett. 90, 143519 (2007)Google Scholar
[20] Pirouz, P., Zhang, M., Galeckas, A., and Linnros, J., Mater. Sci. Forum 815, J6.1.1 (2004)Google Scholar