Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:47:13.183Z Has data issue: false hasContentIssue false

Determination of Ga Self-Diffusion Coefficient in GaAs

Published online by Cambridge University Press:  26 February 2011

T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
S. Yu
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
Get access

Abstract

A quantitative determination of the contributions of the triply-negatively charged Ga vacancies and of the doubly-positively charged Ga self-interstitials to Ga self-diffusion coefficient in GaAs has been carried out. Unde thermal equilibrium and intrinsic conditions, the contribution is characterized by an activation enthalpy of 6 eV for As-rich crystals and of 7.52 eV for Ga-rich crystals, while the contribution is characterized by an activation enthalpy of 4.89 eV for As-rich crystals and of 3.37 eV for Ga-rich crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu, S., Tan, T. Y., and Gösele, U., J. Appl. Phys. 69, 3547 (1991).Google Scholar
2. Yu, S., Tan, T. Y., and Gösele, U., submitted to J. Appl. Phys. (1991).Google Scholar
3. Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
4. Palfrey, H. D., Brown, M., and Willoughby, A. F. W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar
5. Chang, L. L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).Google Scholar
6. Petroff, P. M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
7. Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W., and Logan, R. A., J. Appl. Phys. 51, 357 (1980).Google Scholar
8. Cibert, J., Petroff, P. M., Werder, D. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
9. Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett., 49, 518 (1986).Google Scholar
10. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).CrossRefGoogle Scholar
11. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
See also: Tan, T. Y., Gösele, U., and Yu, S., Cri. Rev. Sol. Stat. Mat. Sci. 17, 47 (1991).Google Scholar
12. Guido, L. J., Holonyak, N. Jr, Hsieh, K. C., Kaliski, R. W., Piano, W. E., Burtham, P. D., Thornton, R. L., Epier, J. E., and Paoli, T. L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
13. Mei, P., Venkatesan, T., Schwarz, S. A., Stoffel, N. G., Harbison, J. P., and Florez, L. A., in Epitaxy of Semiconductor Layered Structures, edited by Tong, R. T., Dawson, L. R., and Gunshar, R. L., Mat. Res. Soc. Proc. 102 (Pittsburgh, PA, 1988) p.61.Google Scholar
14. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).CrossRefGoogle Scholar
15. Cohen, R. M., J. Appl. Phys. 67, 7268 (1990).Google Scholar
16. Hsieh, K. Y., Lo, Y. C., Lee, J. H., and Kolbas, R. M., Inst. Phys. Conf. Ser. No 96, 393 (1989).Google Scholar
17. Willoughby, A. F. W., in Defects in Semiconductor II, edited by Mahajan, S., and Corbett, J. W., Mat. Res. Soc. Proc. 14 (North Holland, NY, 1983) p. 237.Google Scholar
18. Winteler, H. R., Helvetica Physica Acta 44, 451 (1970).Google Scholar
19. Enquist, P., Hutchby, J. A., and de Lyon, T. J., J. Appl. Phys. 63, 4485 (1988).Google Scholar
20. Tuck, B. and Adegboyega, G. A., J. Phys. D 12, 1985 (1979).CrossRefGoogle Scholar
21. Stolwijk, N. A., Schuster, B., Hölzl, J. H., Mehrer, H., and Frank, W., Physica 116B, 335 (1983).Google Scholar
22. Deal, M. D. and Stevenson, D. A., J. Appl. Phys. 59, 2398 (1986)Google Scholar
23. Kashara, J. and Watanabe, N., Jpn. J. Appl. Phys. 19, L151 (1980).Google Scholar
24. Szafranek, I., Szaf ranek, M., Cunningham, B. T., Guido, L. J., Holonyak, N. Jr, and Stillman, G. E., J. Appl. Phys. 68, 5615 (1990).Google Scholar