Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T09:22:14.533Z Has data issue: false hasContentIssue false

Determination of Critical Stress for Dynamic Recrystallization of a High-Mn Austenitic TWIP Steel Micro-Alloyed with Vanadium

Published online by Cambridge University Press:  02 March 2016

Elvira García-Mora
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066–Morelia, Michoacán, México. E-mail: [email protected], [email protected]
Ignacio Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066–Morelia, Michoacán, México. E-mail: [email protected], [email protected]
Francisco Reyes-Calderón
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066–Morelia, Michoacán, México. E-mail: [email protected], [email protected] Departamento de Metalmecánica, Instituto Tecnológico de Morelia. Avenida Tecnológico 1500, Colonia Lomas de Santiaguito, 58120–Morelia, Michoacán, México.
José M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal•lúrgica, ETSEIB–Universitat Politècnica de Catalunya. Av. Diagonal 647, 08028–Barcelona, Spain. Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240–Manresa, Spain.
Get access

Abstract

When high strength and high ductility are required, the Twinning Induced Plasticity steels are an excellent choice. Their mechanical advantages are perfectly known in the automotive industry. Then, they are currently deeply studied. During the deformation at high temperature, TWIP steel experiences dynamic recrystallization. This mechanism results from dislocation interactions, and it depends of temperature, stress, strain, and strain rate. Experimental data give the maximum stress reached by the material, but the critical stress which determinates the DRX onset must be calculated from the strain hardening rate. Both stress and strain change simultaneously, and this variation gives the analytic data to determine σc, which is located at the inflection point of θ-σ plot. The main purpose of this paper was to study how the chemical composition and the experimental parameters (temperature and strain rate) affect the DRX, by the calculation and analysis of the σc values. Hot compression tests were applied to a pair of TWIP steels to compare the DRX onset and its relationship with the vanadium addition. The experimental variables were temperature and strain rate. The true stress–true strain plots were used to calculate σc by cutting data up to a previous point before the σp value, then, a polynomial fit and derivation were applied. The Zener-Hollomon parameter (Z) versus the stresses (peak and critical) plots show how the micro-alloying element vanadium improves the strain hardening in the analyzed TWIP steels.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ueji, , Tsuchida, N., Terada, D., Tsuji, N. and Tanaka, Y., Scripta Mater. 59, 963 (2008).CrossRefGoogle Scholar
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P. and Barbier, D., Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
Kwon, O., in HMnS 2011, edited by Lee, Y.K. (Proc. of the 1st Int. Conf. on High Manganese Steels, Yonsei University, Seoul, Korea, 2011), pp. 1–8.Google Scholar
De Cooman, B.C., Chen, L., Kim, H.S., Estrin, Y., Kim, S.K. and Voswinckel, H., in Microstructure and Texture in Steels and Other Materials, edited by Haldar, A., Suwas, S., and Bhattacharjee, D. (Springer, 2009), pp. 165183.CrossRefGoogle Scholar
De Cooman, B.C., Chin, K.-G. and Kim, J., in Steels for Automotive Applications, New Trends and Developments in Automotive System Engineering, edited by Chiaberge, M. (InTech, 2011), pp. 101128.Google Scholar
Bleck, W., in Emerging Challenges for Metals and Materials Engineering and Technology, edited by Bhattacharjee, D., Bhattarcharyya, T., Chatterjee, S., Dutta, M. and Ghosh, C. (Allied Publishers, 2009), pp. 115.Google Scholar
Dobrzański, L.A. and Borek, W., JAMME 55, 230 (2012).Google Scholar
Engl, B., Steel Grips: Journal of Steel and Related Materials 9, 251 (2011).Google Scholar
Reyes-Calderón, F., Mejía, I. and Cabrera, J.M., Mater. Sci. Eng. A 562, 46 (2013).CrossRefGoogle Scholar
Calvo, J., Rodríguez-Calvillo, P., Cabrera, J.M. and Mateo, A., in Libro de Actas del PMS 2012, edited by Balart-Gimeno, R., Sánchez-Nácher, L., García-Sanoguera, D., Boronat-Vitoria, T. and Fenollar-Gimeno, O., (Proc. XIII Con. Nac. Prop. Mec. Sól., Universitat Politècnica de València, Spain, 2012), pp. 145150.Google Scholar
Smallman, R.E. and Ngan, A.H.W., Physical Metallurgy and Advanced Materials, (Butterworth-Heinemann, 2007), pp. 297298.Google Scholar
Reyes-Calderón, F., Mejía, I., Boulaajaj, A. and Cabrera, J.M., Mater. Sci. Eng. A 560, 552 (2013).CrossRefGoogle Scholar
Eyring, H., Fredrickson, J.W. and Mc Lachlan, D. Jr., Proc. Natl. Acad. Sci. U.S.A. 34, 295 (1948).CrossRefGoogle Scholar
McQueen, H.J., Mater. Res. Forum 539-543, 4397 (2006).Google Scholar
McQueen, H.J., Yue, S., Ryan, N.D. and Fry, E., J. Mater. Process. Tech. 53, 293(1995).CrossRefGoogle Scholar
Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., Mc Nelley, R.R., McQueen, J. and Rollet, A.D., Mater. Sci. Eng. A 238, 219 (1997).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M., in Recrystallization and Related Phenomena, edited by Sleeman, D. (Elsevier, 2004), pp. 269283.CrossRefGoogle Scholar
Montheillet, F. and Jonas, J.J., in ASM Handbook Volume 22A: Fundamentals of Modeling for Metals Processing, edited by Furrer, D.U. and Semiatin, S.L. (ASM International, 2009), pp. 220229.Google Scholar
Poliak, E.I. and Jonas, J.J., ISIJ Int. 43, 684 (2003).CrossRefGoogle Scholar
Poliak, E.I. and Jonas, J.J., ISIJ Int. 43, 692 (2003).CrossRefGoogle Scholar
Poliak, E. I. and Jonas, J.J., Acta Mater. 44, 127 (1996).CrossRefGoogle Scholar
Gottstein, G., Brünger, E., Frommert, M., Goerdeler, M. and Zeng, M., Z. Metalkd. 94, 628 (2003).CrossRefGoogle Scholar
Gottstein, G., Brünger, E., Frommert, M., Goerdeler, M. and Schäfer, N., Mater. Sci. Eng. A 387-389, 604 (2004).CrossRefGoogle Scholar
Mirzadeh, H. and Najafizadeh, A., Mater. Design 31, 1174 (2010).CrossRefGoogle Scholar
Zhou, M. and Clode, M.P., Mech. Mater. 27, 63 (1998).CrossRefGoogle Scholar
Liscic, B., in Steel Heat Treatment Metallurgy and Technologies, edited by Totten, G.E. (CRC, 2006), pp. 277414.Google Scholar