Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:38:25.975Z Has data issue: false hasContentIssue false

A Detailed Study of Void Motion In Passivated Aluminum Interconnects

Published online by Cambridge University Press:  10 February 2011

Jonathan C. Doan
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
John C. Bravman
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
Paul A. Flinn
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
Thomas N. Marieb
Affiliation:
Components Research, Intel Corporation, Santa Clara, CA 95054
Get access

Abstract

Void motion can be an important part of electromigration failure in interconnects. Investigating this process is difficult due to the large variation in behavior in identical samples tested under identical conditions. To deal with the large variability, we have tested 50 samples to failure at four different accelerated test conditions. Because our automated, in-situ technique images an entire test structure, the complete history of a test line is recorded. By testing many samples under direct observation, the complex motion of electromigration voids was comprehensively studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 I Blech, A. and Meieran, E. S., IEEE Reliab. Maint. Symp., 243248 (1970)Google Scholar
2 Levine, E. and Kitcher, J., Proc. 22nd IEEE IRPS, 242249 (1984).Google Scholar
3 Besser, P. R., Madden, M. C.. and Flinn, P. A., J. Appl. Phys. 72, 37923797 (1992).Google Scholar
4 Kraft, O. Bader, S., Sanchez, J. E., Jr., and Arzt, E., Mater Res Soc. Symp. Proc. 308, 199204 (1993).Google Scholar
5 Marieb, T, Bravman, J. C., Flinn, P.. and Madden, M., Mater. Soc. Symp. Proc. 338, 409–143 (1994)Google Scholar
6 Shatzkes, M. and Llyod, J. R., J. Appl. Phys. 59, 38903893 (1986)Google Scholar
7 Kraft, O. and Arzt, E., Appl. Phys.Lett. 66, 20632065 (1995).Google Scholar
8 Gleixner, R. J., Clemens, B. M.. and Nix, W. D., J. Mater. Res 12,20812090 (1997)Google Scholar
9 Riege, S. P., Hunt, A. W.. and Prybyla, J. A., Mater. Res. Soc. Symp. Proc. 391, 249258 (1995).Google Scholar
10 Arzt, E., Kraft, O., Nix, W. D.. and Sanchez, J. E., Jr., J. Appl. Phys. 76, 15631571 (1994).Google Scholar
11 Marieb, T., Flinn, P., Bravman, J. C., Gardner, D.. and Madden, M., J. Appl. Phys. 78, 10261032 (1995).Google Scholar
12 Riege, S. P., Prybyla, J. A.. and Hunt, A. W., Appl. Phys. Lett. 69, 23672369 (1996).Google Scholar
13 Prybyla, J. A., Riege, S. P., Grabowski, S. P.. and Hunt, A. W., Appl. Phys. Lett. 73, 10831085 (1998).Google Scholar
14 Børgesen, P., Korhonen, M. A., Brown, D. D.. and Li, C. Y., AlP Conf. Proc. 263, 219235 (1992).Google Scholar
15 Madden, M. C., Abratowski, E. V., Marieb, T. N.. and Flinn, P. A., Mater. Res. Soc. Symp. Proc. 265, 3338 (1992).Google Scholar
16 Flinn, P. A., Lee, S, Doan, J. Marieb, T. N., Bravman, J. C.. and Madden, M., AIP Conf. Proc 418,250261 (1997).Google Scholar
17 Marieb, T. N., Thesis, Stanford University, 1994.Google Scholar
18 Blech, I. A., J. Appl. Phys. 47, 12031209 (1976).Google Scholar
19 Lee, S., Doan, J., Bravman, J. C., Flinn, P. A., Marieb, T. N.. and Ogawa, S., AIP Conf. Proc. 418, 101106 (1997).Google Scholar
20 Brown, D. D., Sanchez, J. E., Jr., Korhonen, M. A.. and Li, C.-Y., Appl. Phys. Lett. 67, 439441 (1995).Google Scholar
21 Knowlton, B. D., Clement, J. J., Frank, R. I.. and Thompson, C. V., Mater. Res. Soc. Symp. Proc. 391,189196 (1995).Google Scholar