Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:22:15.056Z Has data issue: false hasContentIssue false

Detailed Study of Ion Bombardment in Rf Glow Discharge Deposition Systems: The Role of Helium Dilution

Published online by Cambridge University Press:  25 February 2011

P. Roca I Cabarrocas*
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, F-91128, Palaiseau, Cédex, France.
Get access

Abstract

We present a detailed study of the variables (reactor geometry, gas pressure, rf power and silane dilution) which control the flux and energy of the ions impinging on the substrate in capacitively-coupled rf glow discharge systems. The ion flux and ion energy, measured with an electrostatic energy analyzer, were found to be largely dependent on the reactor geometry, which was quantified by the ratio of the area of the grounded surfaces Sg to the area of the rf electrode Sc. Special attention was paid to the effects of the dilution of silane in hydrogen, helium and argon. Helium and hydrogen dilution were found the most effective means to increase ion bombardment while argon dilution has little effect on the ion energy distribution. Furthermore, it is likely that ion bombardment at moderate energy (Eion < 70 eV) does not induce any serious degradation of the electronic properties of a-Si:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cabarrocas, P. Roca i, Antoine, A.M., Drevillon, B., and Schmitt, J.P.M., ISPC 7 Symp. Proc. (Eindhoven 1985), Ed. by Timmermans, C.J., p. 136 Google Scholar
2. Drevillon, B., Huc, J. and Boussarssar, N., J. of Non Cryst. Solids 59&60, 735 (1983)CrossRefGoogle Scholar
3. Mahan, A. H., Raboisson, P. and Tsu, R., Appl. Phys. Lett. 50, 335 (1987)Google Scholar
4. Mackenzie, K. D., Burnett, J.H., Eggert, J.R., Li, Y.M. and Paul, W., Phys. Rev. B 38, 6120 (1988)Google Scholar
5. Cabarrocas, P. Roca i, Thèse de l'Université Paris VII (1988)Google Scholar
6. Tardy, J. and Meaudre, R., Philosophical Mag. B 48, 571 (1983)Google Scholar
7. Drevillon, B. and Toulemonde, M., J. Appl. Phys. 58, 535 (1985)Google Scholar
8. Drevillon, B., Senemod, C., Cardinaud, C., Khodja, M. Driss and Godet, C., Philos. Mag. B 54, 335 (1986)Google Scholar
9. Ando, K., Aozasa, M. and Pyon, R. G., Appl. Phys. Lett. 44, 4 (1984)Google Scholar
10. Alvarez, F., Chambouleyron, I., Gobbi, A., Mendonça, C. and Castro, F. L., J. Non Cryst. Solids, 77&78, 5270 (1985)Google Scholar
11. Perrin, J., Takeda, Y., Hirano, N., Matsuura, H. and Matsuda, A., Submitted to Japan. J. of Appl. Physics.Google Scholar
12. Knights, J.C., Lujan, R A., Rosenblum, M.P., Street, R.A., Biegelsen, D.K. and Reimer, J.A., Appl. Phys. Lett. 38, 331 (1981)Google Scholar
13. Bisshops, T., Vallinga, P.M., van der Berghe, C.G. and Meijer, P.M., Proceedings of the 8th ISPC, Tokyo (1987) p. 615, ed. by Akashi, K. and Kinbara, A. Google Scholar
14. Koenig, H.R., and Maissel, L.I., IBM J. Res. Develop. 14, 168 (1970)CrossRefGoogle Scholar
15. Pointu, A.M., Appl. Phys.Lett. 50, 1047 (1987)Google Scholar
16. Penin, J., Cabarrocas, P. Roca i, Allain, B. and Friedt, J.M., to appear in Japan. J. Appl. Phys.Google Scholar
17. Godyak, V.A., and Khanneh, A.S., I.E.E.E. Trans. Plasma Sci., PS–14, 112 (1986)Google Scholar
18. Vanier, P.E., Kampas, F.J., Coderman, R.R. and Rajeswaran, G., J. Appl. Phys. 56, 1812 (1984)Google Scholar
19. Matsuda, A., J. of Non Cryst. Solids 59&60, 767 (1983)CrossRefGoogle Scholar
20. Godet, C., Drevillon, B. and Senemaud, C., J. of Non Cryst. Solids 97&98, 431 (1987)Google Scholar