Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:43:46.447Z Has data issue: false hasContentIssue false

Design of Transition Metal Oxide and Hybrid Mesoporous Materials

Published online by Cambridge University Press:  01 February 2011

Clément Sanchez
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
Eduardo L. Crepaldi
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
Anne Bouchara
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
Florence Cagnol
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
David Grosso
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
Galo J. de A. A. Soler-Illia
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie – CNRS 4 place Jussieu, 75252, Paris CEDEX 05, France. E-mail: [email protected].
Get access

Abstract

Mesostructured transition metal (Ti, Zr, V, Al and Ce-Zr) oxide-based hybrid thin films, templated by poly(ethylene oxide)-based surfactants or block copolymers, have been prepared reproducibly, displaying 2D-hexagonal (p6m) or 2D-centred rectangular (c2m) structure. By carefully adjusting the variables involved it is possible to combine both high organisation and excellent optical quality. TiO2 and ZrO2-based materials show thermal stability up to 400-550°C. The elimination of the template can be conducted efficiently and gives rise to high surface area mesoporous films. For the other metal oxide hybrids the inorganic framework is much more fragile, and requires a precise sequence of post-treatments to be stabilised. In addition, original and homogeneous macrotextures shaped with coral-like, helical or macroporous sieves morphologies have been obtained following a nanotectonic approach based on the template-directed assembly by poly-γ-benzyl-L-glutamate (PBLG) of organically functionalised CeO2 crystalline nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, C., Soler-Illia, G. J. de A. A., Ribot, F., Lalot, L., Mayer, C. R. and Cabuil, V., Chem. Mater. 13, 3061 (2001).Google Scholar
2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, 710 (1992).Google Scholar
3.a) Raman, N. K., Anderson, M. T. and Brinker, C. J., Chem. Mater. 8, 1682 (1996). b) H. Yang, N. Coombs, I. Sokolov and G. A. Ozin, Nature 381, 589 (1996). c) D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka and G. D. Stucky, Adv. Mater. 10, 1380 (1998). d) D. Grosso, A. R. Balkenende, P.A. Albouy, M. Lavergne, L. Mazerolles and F. Babonneau, J. Mater. Chem. 10, 2085 (2000).Google Scholar
4. Brinker, C. J., Lu, Y., Sellinger, A. and Fan, H., Adv. Mater. 11, 579 (1999).Google Scholar
5. Grosso, D., Soler-Illia, G. J. A. A., Babonneau, F., Sanchez, C., Albouy, P.A., Brunet-Bruneau, A. and Balkenende, A. R., Adv. Mater. 13, 1085 (2001).Google Scholar
6. Crepaldi, E. L., Soler-Illia, G. J. A. A., Grosso, D., Albouy, P.A. and Sanchez, C., Chem. Commun. 1528 (2001).Google Scholar
7. Pidol, L., Grosso, D., Soler-Illia, G. J. de A. A., Crepaldi, E. L., Sanchez, C., Albouy, P.A., Amenitsch, H. and Euzen, P., J. Mater. Chem. 12, 557 (2002).Google Scholar
8. Crepaldi, E. L., Grosso, D., Soler-Illia, G. J. de A. A., Albouy, P.A., Amenitsch, H. and Sanchez, C., Chem. Mater. (2002) in press.Google Scholar
9. Galow, T.H., Boal, A.K., Rotello, V.M., Adv. Mater. 12, 576 (2000).Google Scholar
10. Davis, S.A., Beulmann, M., Rhodes, K.H., Zhang, B., Mann, S., Chem. Mater. 13, 3218 (2001).Google Scholar
11. Doty, P., Bradbury, J.H., Holtzer, A.M., J. Am. Chem. Soc. 78, 947 (1956).Google Scholar
12. Yang, T., Doty, P., J. Am. Chem. Soc. 79, 761 (1957).Google Scholar
13. Bouchara, A., Soler-Illia, G. J. de A. A., Chane-Ching, J.Y. and Sanchez, C., Chem. Commun. 1234 (2002).Google Scholar
14. Klotz, M., Albouy, P.A., Ayral, A., Ménager, C., Grosso, D., Lee, A. Van der, Cabuil, V., Babonneau, F. and Guizard, C., Chem. Mater. 12, 1721 (2000).Google Scholar
15.a) Grosso, D., Balkenende, A. R., Albouy, P.A., Ayral, A., Amenitsch, H. and Babonneau, F., Chem. Mater. 13, 1848 (2001). b) M. H. Huang, B. S. Dunn and J. I. Zink, J. Am. Chem. Soc. 122, 3739 (2000).Google Scholar
16. Soler-Illia, G. J. A. A., Scolan, E., Louis, A., Albouy, P. A. and Sanchez, C., New J. Chem. 25, 156 (2001).Google Scholar
17. Crepaldi, E. L., Soler-Illia, G. J. de A. A., Grosso, D., Albouy, P.A., Amenitsch, H. and Sanchez, C., Stud. Surf. Sci. Catal. 141, 235 (2002).Google Scholar
18. Caruso, R., Antonietti, M., Giersig, M., Hentze, H.P., Jia, J., Chem. Mater. 13, 1114 (2001).Google Scholar
19. Nakanishi, K., J. Porous Mater. 4, 67 (1997).Google Scholar
20. Kumon, S., Nakanishi, K., Hirao, K., J. Sol-Gel Sci. Technol. 19, 553 (2000).Google Scholar