Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:19:55.288Z Has data issue: false hasContentIssue false

Design of High-Throughput Superoleophobic Copper Meshes for Oil-Water Separation

Published online by Cambridge University Press:  09 June 2015

HaoRan Liu
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, P. O. Box 54224, Abu Dhabi, UAE
BoKang Jia
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, P. O. Box 54224, Abu Dhabi, UAE
GuanQiu Li
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, P. O. Box 54224, Abu Dhabi, UAE
Sumaya Nooralla
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, P. O. Box 54224, Abu Dhabi, UAE
TieJun Zhang*
Affiliation:
Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, P. O. Box 54224, Abu Dhabi, UAE
*
* Corresponding Author Email: [email protected]
Get access

Abstract

Advanced materials with desired wettability are extremely important for environmental sustainability, such as oily industrial wastewater treatment and oil spill cleanup. To meet this demand, a scalable nanoengineering approach was developed to fabricate superhydrophilic and underwater superoleophobic inorganic meshes for cross-flow filtration and oil/water separation. The resulting nanostructured copper meshes exhibit superhydrophilicity and underwater superoleophobicity (oil contact angle approaching to 159°). With these meshes, very high values of filtration flux (≥900,000 Lh-1m-2) have been achieved, with ultra-low oil residue in the filtrate (<40 ppm) and long water retention time (more than 1 h). The proposed nanoengineering method paves the way for effective gravity-driven separation of immiscible oil/water mixtures, especially for low-density oil purification.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hasr, A. H. and Ahmed, M. H., WSEAS Transactions on Signal Processing 3 (1), 102107 (2007).Google Scholar
Lin, J., Tian, F., Shang, Y., Wang, F., Ding, B., Yu, J. and Guo, Z., Nanoscale 5 (7), 27452755 (2013).CrossRefGoogle ScholarPubMed
Cheryan, M. and Rajagopalan, N., Journal of membrane science 151 (1), 1328 (1998).CrossRefGoogle Scholar
Raza, A., Ding, B., Zainab, G., El-Newehy, M., Al-Deyab, S. S. and Yu, J., Journal of Materials Chemistry A 2 (26), 1013710145 (2014).CrossRefGoogle Scholar
Yoon, Y., Hsiao, B. S. and Chu, B., Journal of Membrane Science 338 (1-2), 145152 (2009).CrossRefGoogle Scholar
Ma, H., Yoon, K., Rong, L., Mao, Y., Mo, Z., Fang, D., Hollander, Z., Gaiteri, J., Hsiao, B. S. and Chu, B., Journal of Materials Chemistry 20 (22), 46924704 (2010).CrossRefGoogle Scholar
Wang, X., Zhang, K., Yang, Y., Wang, L., Zhou, Z., Zhu, M., Hsiao, B. S. and Chu, B., Journal of Membrane Science 356 (1-2), 110116 (2010).CrossRefGoogle Scholar
Tang, Z., Wei, J., Yung, L., Ji, B., Ma, H., Qiu, C., Yoon, K., Wan, F., Fang, D., Hsiao, B. S. and Chu, B., Journal of Membrane Science 328 (1-2), 15 (2009).CrossRefGoogle Scholar
Zhang, L., Zhong, Y., Cha, D. and Wang, P., Scientific reports 3 (2013).Google Scholar
Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L. and Zhu, D., Angewandte Chemie International Edition 43 (15), 20122014 (2004).CrossRefGoogle Scholar
Raza, A., Si, Y., Ding, B., Yu, J. and Sun, G., Journal of colloid and interface science 395, 256262 (2013).CrossRefGoogle Scholar
Raza, A., Ding, B., Zainab, G., El-Newehy, M., Al-Deyab, S. S. and Yu, J., Journal of Materials Chemistry A (2014).Google Scholar
Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L. and Jiang, L., Advanced Materials 23 (37), 42704273 (2011).CrossRefGoogle Scholar
Zhang, W., Zhu, Y., Liu, X., Wang, D., Li, J., Jiang, L. and Jin, J., Angewandte Chemie International Edition 53 (3), 856860 (2014).CrossRefGoogle Scholar
Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. and Tuteja, A., Nature communications 3, 1025 (2012).CrossRefGoogle Scholar
Cheng, Z., Lai, H., Du, Y., Fu, K., Hou, R., Zhang, N. and Sun, K., ACS applied materials & interfaces 5 (21), 1136311370 (2013).CrossRefGoogle Scholar
Zhang, F., Zhang, W. B., Shi, Z., Wang, D., Jin, J. and Jiang, L., Advanced Materials 25 (30), 41924198 (2013).CrossRefGoogle Scholar
Wang, C., Yao, T., Wu, J., Ma, C., Fan, Z., Wang, Z., Cheng, Y., Lin, Q. and Yang, B., ACS applied materials & interfaces 1 (11), 26132617 (2009).CrossRefGoogle Scholar
Cudennec, Y. and Lecerf, A., Solid state sciences 5 (11), 14711474 (2003).CrossRefGoogle Scholar
Cassie, A. B. D. and Baxter, S., Trans. Faraday Soc. 40, 546551 (1944).CrossRefGoogle Scholar