Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:43:16.311Z Has data issue: false hasContentIssue false

Design of Ductile Polycrystalline Ni3 Al Alloys*

Published online by Cambridge University Press:  21 February 2011

C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. L. White
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

This paper provides a comprehensive review of current efforts on design of ductile polycrystalline Ni3 AI alloys. Microalloying has proven to be very effective in alleviating the grain-boundary emibrittlement problem. The ductility and fabricability of Ni3 Al (24 at. % Al) are dramatically improved by adding a few hundred parts per million of boron. The beneficial effect of boron is related to its unusual segregation behavior as predicted from the theory of grain-boundary cohesion developed by Rice, based on thermodynamic analyses. Alloy stoichiometry strongly influences grain-boundary chemistry, which, in turn, affects the boundary cohesion and overall ductility of Ni3 Al.

The solid-solution hardening of Ni3 AI depends on the substitutional behavior of alloying elements, atomic size misfit, and the degree of nonstoichiometry of the alloy. Hafnium additions are very effective in improving high-temperature properties of ternary Ni3Al (Al + Hf = 24 at. %) doped with boron. Alloying with <2% Hf substantially increases the yield stress and raises the peak-strength temperature. In addition, hafnium substantially improves creep properties and oxidation resistance. The Ni3 Al aluminides truly represent a new series of heat resistant materials which do not depend on chromium for oxidation resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored jointly by the Division of Materials Sciences, and the Office of Energy Utilization Research, Energy Conversion and Utilization Technologies (ECUT) Program, U.S. Department of Energy under Contract No. DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Hansen, M., Constitution of Binary Alloys, pp. 119, McGraw-Hill Book Company, New York (1958).Google Scholar
2. Thorton, P. H., Davis, R. G. and Johnson, T. L., Metall. Trans. 1, 207 (1970).Google Scholar
3. Flinn, P. A., Trans. ThS-AIME 218, 145 (1960).Google Scholar
4. Davis, R. G. and Stoloff, N. S., Trans. TiS-AIME 233, 714 (1965).Google Scholar
5. Aitken, E. A., Intermetallic Compounds, ed. Westbrook, J. H., pp. 491515, John Wiley and Sons, Inc., New York (1967).Google Scholar
6. Liu, C. T. and Koch, C. C., Technical Aspects of Critical Materials Used by the Steel Industry, Vol. IIB, NBSIR 83–2679–2, National Bureau of Standards (1983).Google Scholar
7. Grala, E. M., Mechanical Properties of Intermetallic Compounds, ed. Westbrook, J. H., pp. 358, John Wiley and Sons, Inc., New York (1960).Google Scholar
8. Moskovic, R., J. Mater. Sci. 13, 1901 (1978).Google Scholar
9. Aoki, K. and Izumi, O., Trans JIM 19, 203 (1978).CrossRefGoogle Scholar
10. Seybolt, A. V. and Westbrook, J. H., Acta Metall. 12, 449 (1964).Google Scholar
11. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 41, 170 (1977).Google Scholar
12. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
13. Liu, C. T., White, C. L., Koch, C. C. and Lee, E. H., Proc. Symp. High Temperature Materials Chemistry II, ed. Munir, , et al., The Electrochemical Soc., Inc. (1983).Google Scholar
14. Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. A 15A, 399 (1984).Google Scholar
15. Ochiai, S., Oya, Y., and Suzuki, T., Acta Metall. 32, 289298 (1984).Google Scholar
16. Koch, C. C., Horton, J. A., Liu, C. T., Cavin, O. B., Scarbrough, J. O., in Rapid Solidification Processing, Principles and Technologies III, Mehrabian, R., ed., pp. 264–69 (National Bureau of Standards, 1983).Google Scholar
17. Inoue, A., Tomioku, H., and Masumoto, T., Metall. Trans. A 14A, 1367 (1983).CrossRefGoogle Scholar
18. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., Lipsitt, H. A., in Rapid Solidification Processing, Principles and Technologies III, Mehrabian, R., ed., p. 240 (National Bureau of Standards, 1983).Google Scholar
19. Slaughter, E. R. and Das, D. K., in Rapid Solidification Proceeding: Principles and Technologies II, Kear, Mehrabian. and Cohen, , eds., pp. 354–63 (Claitor's Publishing Division, Baton Rouge, 1980).Google Scholar
20. Koch, C. C., Proc. MRS Syrup. High-Temperature Ordered Intermetallic Alloys, November 2629, 1984, Boston, MA.Google Scholar
21. Seybolt, A. U. and Westbrook, J. H., Acta Metall. 12, 449 (1964).CrossRefGoogle Scholar
22. Westbrook, J. H. and Wood, D. L., J. Inst. Aletall. 91, 174 (1962–1963).Google Scholar
23. Kear, B. H., Private Communication to C. L. White, Pratt and Whitney, 1973.Google Scholar
24. White, C. L. and Stein, D. F., Metall. Trans. A 9A, 13 (1978).Google Scholar
25. Liu, C. T., White, C. L., Horton, J. A., accepted for publication in Acta Metallurgica, 1984.Google Scholar
26. White, C. L., Clausing, R. E. and Heatherly, L., Metall. Trans. A 10A, 683 (1979).CrossRefGoogle Scholar
27. Huang, S. K. and Morris, J. W., Metall. Trans. A 10A, 545 (1979).Google Scholar
28. Stein, D. F. and Heldt, L. A., Interfacial Segregation, eds. Johnson, W. C. and Brakely, J. M., pp. 239260, RSM, Metal Park (1977).Google Scholar
29. Briant, C. L. and Messmer, R. P., Phil. Mag. B–12, 569 (1980).Google Scholar
30. Messmer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
31. White, C. L., Padgett, R. A., Liu, C. T., Yalisove, S. M., accepted for publication in Scripta Metallurgica, 1984.Google Scholar
32. Rice, J. R., The Effect of Hydrogen on the Behavior of Metals, pp. 455466, AIME, New York (1976).Google Scholar
33. Taub, A. I., Huang, S. C., Chang, K. M., Private Communication, May 1984.Google Scholar
34. Guard, R. W. and Westbrook, J. H., Trans. AIME 215, 807814 (1959).Google Scholar
35. Rawlings, R. D., Staton-BeVan, A., J. Mater. Sci. 10, 505514 (1975).Google Scholar
36. Noguchi, O., Oya, Y. and Suzuki, T., Aletall. Trans. A 12A, 1647 (1981).Google Scholar
37. Aoki, K. and Izumi, O., Phys. Status Solidi A 32, 657 (1975).CrossRefGoogle Scholar
38. Huang, S. C., Taub, A. I., and Chang, K. M., submitted to Acta Metallurgica, 1984.Google Scholar
39. Liu, C. T., Proc. Symp. High-Temperature Alloy Theory and Design, Bethesda, MD, April 911, 1984.Google Scholar
40. Kear, B. H. and Wilsdorf, H. G., Trans. AIME 224, 382 (1962).Google Scholar
41. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).Google Scholar
42. Horton, J. A. and Liu, C. T., unpublished results, October 1983.Google Scholar
43. Fleischer, R. L., Acta Metall. 11, 203 (1963).CrossRefGoogle Scholar
44. Curwick, L. R., Ph. D. Dissertation, University of Minnesota, 1972.Google Scholar
45. Flinn, P. A., Trans. AIME 218, 145—154 (1960).Google Scholar
46. Ham, R. K., Cook, R. H., Purdy, G. R., and Willoughby, G., J. Mater. Sci. 6, 205 (1972).Google Scholar
47. Nicholls, J. R. and Rawlings, R. D., J. Mater. Sci. 12, 2456 (1977).Google Scholar
48. Pope, D. P. and Ezz, S. S., Int. Met. Rev. 29, 136 (1984).Google Scholar
49. Stoloff, N. S., and Kuruvilla, A. K., Private Communications, October 1984.Google Scholar
50. Kuruvilla, A. K. and Stoloff, N. S., submitted to publication in Metallurgical Transactions (May 1984).Google Scholar
51. Santella, M. L. and David, S. A., Proc. Symp. High-Temperature Ordered Intermetallic Alloys, November 2628, 1984, Boston, MA.Google Scholar
52. Tsipas, D. N., “The Effect of Hf Additions on Oxidation Behavior of Ni3Al,” paper presented at the 3rd International Symposium on High-Temperature Corrosion of Metals and Alloys, Japan, November 1820, 1982.Google Scholar