Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:36:01.096Z Has data issue: false hasContentIssue false

Design and Realization of Biomedical Devices Based on Shape Memory Polymers

Published online by Cambridge University Press:  31 January 2011

Duncan J Maitland
Affiliation:
[email protected], Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
Ward Small IV
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Pooja Singhal
Affiliation:
[email protected], Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
Wonjun Hwang
Affiliation:
[email protected], Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
Jennifer N Rodriguez
Affiliation:
[email protected], Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
Fred Clubb
Affiliation:
[email protected], Texas A&M University, College of Veterinary Medicine, College Station, Texas, United States
Thomas S Wilson
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Get access

Abstract

Our experience with shape memory polymers (SMP) began with a project to develop an embolic coil release actuator in 1996. This was the first known SMP device to enter human trials. Recent progress with the SMP devices include multiple device applications (stroke treatments, stents, other interventional devices), functional animal studies, synthesis and characterization of new SMP materials, in vivo and in vitro biocompatibility studies and device-tissue interactions for the laser, resistive, or magnetic-field activated actuators. We describe several of our applied SMP devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Melkerson, M.N., Food and Drug Administration 510(k) approval of Medshape Solution's SMP shoulder anchor, http://www.fda.gov/cdrh/pdf8/K083792.pdf (2009).Google Scholar
2 Lendlein, A. and Langer, R., Science 296 (5573), 1673 (2002).10.1126/science.1066102Google Scholar
3 Takahashi, T., Hayashi, N., and Hayashi, S., Journal of Applied Polymer Science 60( 7), 1061 ( 1996).10.1002/(SICI)1097-4628(19960516)60:7<1061::AID-APP18>3.0.CO;2-33.0.CO;2-3>Google Scholar
4 Kim, B. K., Lee, S. Y., and Xu, M., Polymer 37 (26),5781 (1996).10.1016/S0032-3861(96)00442-9Google Scholar
5 Kuhn, W., Katchalsky, A., and Eisenberg, H., Nature 165, 514 (1950).10.1038/165514a0Google Scholar
6 Hayashi, S. and Fujimura, H., U. S. Patent No. 5049591 (Sept. 17 1991).Google Scholar
7 Ratner, B.D. and Hoffman, A. S., in Introduction to Materials in Medicine, edited by Ratner, B. D., Hoffman, A. S., Schoen, F. J. et al. (Academic Press, New York, 1996).Google Scholar
8 Kusy, R. P. and Whitley, J. Q., Thermochimica Acta 243 (2), 253 (1994).10.1016/0040-6031(94)85060-7Google Scholar
9 Schetky, L. M., Scientific American 241 (5), 74 (1979).10.1038/scientificamerican1179-74Google Scholar
10 Swain, M. V., Nature 322 (6076), 234 (1986).10.1038/322234a0Google Scholar
11 Otsuka, K. and Wayman, C. M., Shape Memory Materials. (Cambridge University Press, New York, 1998).Google Scholar
12 Liu, Yiping, Gall, Ken, Dunn, Martin L., Patrick McCluskey, and Robin Shandas, Advanced Materials and Processes 161 (12), 31 (2003).Google Scholar
13 Bertmer, M., Buda, A., Blomenkamp-Hofges, I., Kelch, S., and Lendlein, A., Macromolecules 38 (9), 3793 (2005).10.1021/ma0501489Google Scholar
14 Metcalfe, A., Desfaits, A. C., Salazkin, I., Yahia, L., Sokolowski, W. M., and Raymond, J., Biomaterials 24 (3), 491 (2003).10.1016/S0142-9612(02)00362-9Google Scholar
15 Maitland, D. J., Metzger, M. F., Schumann, D., Lee, A., and Wilson, T. S., Lasers In Surgery And Medicine 30 (1), 1 (2002).10.1002/lsm.10007Google Scholar
16 Small IV, W., Wilson, T.S., Benett, W.J., Loge, J.M. and Maitland, D.J., Optics Express 13 (20), 8204 (2005).10.1364/OPEX.13.008204Google Scholar
17 Metzger, M. F., Wilson, T. S., Schumann, D., Matthews, D. L., and Maitland, D. J., Biomedical Microdevices 4 (2), 89 (2002).10.1023/A:1014674912979Google Scholar
18 Gall, K., Yakacki, C. M., Liu, Y., Shandas, R., Willett, N., and Anseth, K. S., J Biomed Mater Res A 73 (3), 339 (2005).10.1002/jbm.a.30296Google Scholar
19 Wache, H. M., Tartakowska, D. J., Hentrich, A., and Wagner, M. H., J Mater Sci Mater Med 14 (2), 109 (2003).10.1023/A:1022007510352Google Scholar
20 Gall, Ken, Yakacki, Christopher M., Liu, Yiping, Shandas, Robin, Willett, Nick, and Anseth, Kristi S., Journal of Biomedical Materials Research-Part A 73 (3), 339 (2005).10.1002/jbm.a.30296Google Scholar
21 Baer, G., Wilson, T. S., Matthews, D. L., and Maitland, D. J., Journal of Applied Polymer Science 103 (6) (2007).10.1002/app.25567Google Scholar
22 Baer, G. M., Wilson, T. S., Small IV, W., Hartman, J., Benett, W. J., Matthews, D. L., and Maitland, D. J., Journal of Biomedical Materials Research Part B: Applied Biomaterials (2008).Google Scholar
23 Cabanlit, M., Maitland, D., Wilson, T., Simon, S., Wun, T., Gershwin, M. E., and Van de Water, J., Macromolecular Bioscience 7 (1) (2007).10.1002/mabi.200600177Google Scholar
24 Wilson, T. S., Bearinger, J. P., Herberg, J. L., Marion III, J. E., Wright, W. J., Evans, C. L., and Maitland, D. J., Journal of Applied Polymer Science 106 (1) (2007).10.1002/app.26593Google Scholar
25 Maitland, D. J., Lee, A., Schumann, D., and Da Silva, L. B., U. S. Patent No. 6,102,917 (Aug 15 2000).Google Scholar
26 Hartman, J., IV, W. Small, Wilson, T. S., Brock, J., Buckley, P. R., Benett, W. J., Loge, J. M., and Maitland, D. J., American Journal of Neuroradiology 28 (5), 872 (2007).Google Scholar
27 Small, W., Metzger, M. F., Wilson, T. S., and Maitland, D. J., IEEE Journal of Selected Topics in Quantum Electronics 11 (4), 892 (2005).10.1109/JSTQE.2005.857748Google Scholar
28 Small, W., Wilson, T. S., Benett, W. J., Loge, J. M., and Maitland, D. J., Optics Express 13 (20), 8204 (2005).10.1364/OPEX.13.008204Google Scholar
29 Small, W., Wilson, T. S., Buckley, P. R., Benett, W. J., Loge, J. M., Hartman, J., and Maitland, D. J., IEEE Trans Biomed Eng (2006).Google Scholar
30 Smith, W. S., Sung, G., Starkman, S., Saver, J. L., Kidwell, C. S., Gobin, Y. P., Lutsep, H. L., Nesbit, G. M., Grobelny, T., Rymer, M. M., Silverman, I. E., Higashida, R. T., Budzik, R. F., and Marks, M. P., Stroke 36 (7), 1432 (2005).10.1161/01.STR.0000171066.25248.1dGoogle Scholar
31 Maitland, D. J., Small, W., Ortega, J. M., Buckley, P. R., Rodriguez, J., Hartman, J., and Wilson, T.S., Optics Express (2007).Google Scholar
32 Baer, G. M., Small, W., Wilson, T. S., Benett, W. J., Matthews, D. L., Hartman, J., and Maitland, D. J., BioMedical Engineering OnLine 6 (1), 43 (2007).10.1186/1475-925X-6-43Google Scholar
33 Schmidt, W., Behrens, P., Behrend, D., and Schmitz, K-P, Prog Biomed Res 4 (1), 52 (1999).Google Scholar
34 Schmitz, K-P, Schmidt, W., Behrens, P., and Behrend, D., Prog Biomed Res 5 (3), 197 (2000).Google Scholar
35 Rieu, R., Barragan, P., Masson, C., Fuseri, J., Garitey, V., Silvestri, M., Roquebert, P., and Sainsous, J., Catheter Cardiovasc Interv 46 (3), 380(1999).10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J3.0.CO;2-J>Google Scholar
36 Agrawal, C. M., Haas, K. F., Leopold, D. A., and Clark, H. G., Biomaterials 13 (3), 176 (1992).10.1016/0142-9612(92)90068-YGoogle Scholar
37 Venkatraman, S., Poh, T. L., Vinalia, T., Mak, K. H., and Boey, F., Biomaterials 24 (12), 2105 (2003).10.1016/S0142-9612(02)00640-3Google Scholar