Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:58:47.855Z Has data issue: false hasContentIssue false

Design and Properties of Multilayered Ceramic Composites

Published online by Cambridge University Press:  10 February 2011

D. B. Marshall*
Affiliation:
Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
Get access

Abstract

The design of multilayered ceramic composites is reviewed, with the aim of relating the properties that can be achieved to the microstructure of the composite. Limitations on some properties, such as damage tolerance and strength, are discussed. Failure mechanism maps that define some of these limits are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W. and Birchall, J. D., “A Simple way to Make Tough Ceramics,” Nature, 347 455457 (1990).Google Scholar
2. Phillipps, A. J., Clegg, W. J. and Clyne, T. W., “The Correlation of Interfacial and Macroscopic Toughness in SiC Laminates,” Composites, 24[2] 166176 (1993).Google Scholar
3. Liu, H. and Hsu, S. M., “Fracture Behavior of Multilayer Silicon Nitride/Boron Nitride Cramics,” J. Amer. Ceram. Soc., in press (1996).Google Scholar
4. Davis, J. B. and Clegg, W. J., “Ceramic Laminates for High Temperature Structural Applications,” Am. Ceram Soc. Annual Meeting, (1995).Google Scholar
5. Nicholson, P. S., Sarkar, P. and Haung, X., “Electrophoretic Deposition and its use to Synthesize ZrO2/Al 2O3Micro-Laminate Ceramic/Ceramic Composites,” J. Material Science, 28 62746278 (1993).Google Scholar
6. Morgan, P. E. D. and Marshall, D. B., “Functional Interfaces in Oxide-Oxide Composites,” J. Mat. Sci. Eng., A162[1–2] 1525 (1993).Google Scholar
7. Morgan, P. E. D. and Marshall, D. B., “Ceramic Composites of Monazite and Alumina,” J. Am. Ceram. Soc, 78[6] 1553–63 (1995).Google Scholar
8. Morgan, P. E. D., Marshall, D. B. and Housley, R. M., “High Temperature Stability of Monazite-Alumina Composites,” J. Mat. Sci. Eng., A195 215222 (1995).Google Scholar
9. Marshall, D. B., Ratto, J. J. and Lange, F. F., “Enhanced Fracture Toughness in Layered Composites of Ce-ZrO2 and Al2 O3 ,” J. Am. Ceram. Soc., 74[12] 29792987 (1991).Google Scholar
10. Marshall, D. B. and Ratto, J. J., “Crack Resistance Curves in Layered Ce-ZrO2 /Al2O3 Ceramics”; pp 517523 in Science and Technology of Zirconia V. Eds Badwal, S. P. S., Bannister, M. J. and Hannink, R. J. H., Technomic Pub. Co., 1993.Google Scholar
11. Boch, P., Chartier, T. and Huttepain, M., “Tape Casting of A12O3/ZrO2 Laminated Composites,” J. Am. Ceram. Soc., 69 C191 (1986).Google Scholar
12. Shaw, M. C., Marshall, D. B., Dadkhah, M. S. and Evans, A. G., “Cracking and Damage Mechanisms in Ceramic/Metal Multilayers,” Acta Met., 41[11] 33113322 (1993).Google Scholar
13. He, M. Y., Heredia, F. E., Wissuchek, D. J., Shaw, M. C. and Evans, A. G., “The Mechanics of Crack Growth in Layered Materials,” Acta. metall. mater., (1993).Google Scholar
14. Cutler, W. A., Zok, F. W. and Lange, F. F., “Mechanical Behavior of Several Hybrid CMC Laminates,” J. Am. Ceram. Soc., (in press).Google Scholar
15. Folsom, C. A., Zok, F. W., Lange, F. F. and Marshall, D. B., “Mechanical Behavior of a Laminar Ceramic/Fiber Reinforced Epoxy Composite,” J. Am. Ceram. Soc., 75[111] 29692975 (1992).Google Scholar
16. Droillard, C. and Lamon, J., “Fracture Toughness of 2-D woven SiC/SiC CVI-Composites with multilayered interphases,” J. Amer. Ceram Soc., 79[4] 849–58 (1996).Google Scholar
17. Lackey, W. J., Vaidyaraman, S. and Moore, K. L., “Laminated C-SiC Matrix Composites Produced by CVI,” J. Amer. Ceram. Soc., (in press).Google Scholar
18. Deve, H. E., Evans, A. G. and Shih, D. S., “A High Toughness γ-Titanium Aluminide,” Acta. metall. mater., 40[6] 12591265 (1992).Google Scholar
19. Phillipps, A. J., Clegg, W. J. and Clyne, T. W., “Fracture Behavior of Ceramic Laminates in Bending: I. Modelling of Crack Propagation,” Acta Metall. Material, 41[3] 805–17 (1993).Google Scholar
20. Phillipps, A. J., Clegg, W. J. and Clyne, T. W., “Fracture Behavior of Ceramic Laminates in Bending: II. Comparison of Modelling with Experimental Data,″,” Acta Metall. Material, 41[3] 819–27 (1993).Google Scholar
21. Folsom, C. A., Zok, F. W. and Lange, F. F., “Flexural Properties of Brittle Multilayer Materials: I. Modeling, ″,” J. Americal Ceramic Society, 77[3] 689–96 (1994).Google Scholar
22. Evans, A. G. and Cannon, , “Toughening of Brittle Solids by Martensitic Transformations,” Acta Metall., 34[5] 761800 (1986).Google Scholar
23. Cox, B. N. and Marshall, D. B., “Crack Initiation in Brittle Fiber Reinforced Laminates,” J. Amer. Ceram. Soc., in press.Google Scholar