Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:30:08.617Z Has data issue: false hasContentIssue false

Design and Modelling of a Fourier Spectrometer Based on Sampling a Standing Wave

Published online by Cambridge University Press:  15 March 2011

D. Knipp
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
H. Stiebig
Affiliation:
Research Center Jülich, Institute of Photovoltaic, 52425 Jülich, Germany
H.-J. Büchner
Affiliation:
TU Ilmenau, Institute of Measurement and Sensor Technology, 98684 Ilmenau, Germany
G. Jäger
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
M. Rosa
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
R.A. Street
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
Get access

Abstract

The design of a novel spectrometer based on a thin film diode in combination with an electro statically tunable micro machined mirror will be presented. The semi transparent diode is introduced into a standing wave created in front of a reflector to sample the profile of the standing wave. Varying the position of the reflector results in a shift of the phase of the standing waves and thus in a change of the optical generation profile within the detector. The spectral information of the incoming light can be determined by the Fourier transformation of the transient response of the sensor. An analytical optical model will be presented which facilitates the evaluation of different detector concepts. The model will be applied to discuss different device designs regarding the resolution of the spectrometer, the spectral range and the linearity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zavracky, P.M., Denis, K.L., Xie, H.K., Wester, T., Kelley, P., SPIE Proc. 3514, p. 179 (1998).Google Scholar
[2] Manzardo, O.; Guldimann, B.; Marxer, C.R.; de Rooij, K.F.; Herzig, H.P., IEEE/LEOS International Conference on Optical MEMS (2000)Google Scholar
[3] Manzardo, O.; Herzig, H.P.; Marxer, C.R.; de Rooij, N.F. SPIE Proc. 3878 p. 39 (1999).Google Scholar
[4] Kung, H.L., Bhalotra, S.R., Mansell, J.D., Miller, D.A.B., 2000 IEEE/LEOS International Conference on Optical MEMSGoogle Scholar
[5] Bächner, H., Deutsches Patent DE-PS 33 00 369, (1983).Google Scholar
[6] Alexander, D.H., Ishizuka, K., Sato, R.N., United State Patent 4,443,107 (1984)Google Scholar
[7] Knittl, Z., Optics of Thin Films (Wiley, London 1976)Google Scholar
[8] Stiebig, H., Kreisel, A., Winz, K., Meer, M., Schultz, N., Eickhoff, Th., Wagner, H., Proc. First World Conference on Photovoltaic Energy Conversion (WCPEC), 603 (1994).Google Scholar
[9] Knipp, D., Herzog, P.G., Stiebig, H., IEEE Transactions on Electron Devices, in print.Google Scholar