Article contents
Descriptive Chemistry Of Self-Assembled Multilayer Second-Order NLO Materials. Chemical, Microstructural and Performance Interrelationships
Published online by Cambridge University Press: 16 February 2011
Abstract
The construction of covalently self-assembled second-order nonlinear optical (NLO) Materials containing stilbazole or alkynyl-type high-β chromophores acentrically organized on inorganic oxide substrates is discussed. These structurally different chromophores exhibit differing packing densities on the surface when introduced under the same reaction conditions. In the stilbazolium chromophores, ion-exchange of the chloride counter-anion with very large anionie organic dyes results in appreciably enhanced second harmonic generation (SHG) efficiency. The frequency-dependent SHG response for self-assembled Monolayers derived from the alkynyl-type chromophore was also investigated. The linear absorption spectra exhibit two maxima in the visible region which are assigned to electronically isolated chromophores (480 nm) and aggregated species (540 nm). The dispersion of the second-order NLO coefficient reveals that both microstructures are NLO-active. The origin of the SHG response from both assemblies is discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 2
- Cited by