No CrossRef data available.
Article contents
Depth-Dependent Hardness Characterization by Nanoindentation using a Berkovich Indenter with a Rounded Tip
Published online by Cambridge University Press: 01 February 2011
Abstract
The height difference Δhb between the ideally sharp Berkovich indenter tip and a Δhb rounded tip was measured by direct observation using atomic force microscopy (AFM). The accuracy of the indirect area function method for measuring h was confirmed. The Δhb indentation size effects (ISE) in (100) single crystal copper, (100) single crystal tungsten, and fused quartz were characterized by applying the ISE model considering the rounded tip effect. The model fits the data these materials well, even though fused quartz does not deform by dislocations. However, a very small value of the ISE characteristic length h' was obtained for fused quartz. The present h' value for (100) copper is 32% larger than a previously-measured value for polycrystalline copper. This may indicate that grain boundaries suppress the dislocation activity envisioned in the ISE model.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005