Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:29:12.527Z Has data issue: false hasContentIssue false

Deposition Sequences for Atomic Layer Growth of AlN Thin Films on Si(100) Using Dimethylethylamine Alane and Ammonia

Published online by Cambridge University Press:  10 February 2011

Jason S. Kuo
Affiliation:
Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195
J. W. Rogers Jr
Affiliation:
Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195
Get access

Abstract

Recent studies have demonstrated that dimethylethylamine alane (DMEAA) is a viable group III precursor for depositing high quality aluminum nitride thin films during atomic layer growth with ammonia as the group V source. However, a practical consideration that is questioned but seldom investigated is whether one should initiate the growth with the group III or the group V source. Clearly DMEAA interacts differently with silicon than does ammonia; hence, reversing the deposition sequence will lead to different interfacial composition. Earlier studies involving TMAA and ammonia indicate that direct interaction of group III precursor with the surface may lead to higher carbon contamination. In this work, adsorption of DMEAA on Si(100) and on ammonia-covered Si(100) are characterized with Temperature-Programmed Desorption (TPD), Secondary-Ion Mass Spectrometry (SIMS), and Temperature-Programmed Secondary-Ion Mass Spectrometry (TPSIMS). Preliminary results indicate that DMEAA adsorbs molecularly on both Si(100) and ammonia-covered Si(100), but to a much smaller coverage on the latter surface. Results from reversing the adsorption sequence, i.e. ammonia first then DMEAA, will be compared as a possibility for interfacial quality control.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kidder, J. N. Jr., Kuo, J. S., Ludviksson, A., Pearsall, T. P., Rogers, J. W. Jr. et al., J. Vac. Sci. Technol. A. 13 (3), 711715(1995)Google Scholar
2 Frigo, D. M., Eijden, G. J. M. van, Reuvers, P. J., and Smit, C. J., Chem. Matter. 6, 19195 (1994).Google Scholar
3 Wiberg, E. and Amberger, E., Hydrides of the Elements of Main Groups I-IV (Elsevier, Amsterdam, 1971), P. 383.Google Scholar
4 Liu, Herng, ”Metalorganic Chemical Vapor Deposition of Aluminum Nitride: Mechanistics and Surface Chemistry Studies,” Ph.D. Thesis, University of Washington, 1995.Google Scholar
5 Kim, B-Y, Li, X., and Rhee, S-W, Appl. Phys. Lett. 68 (25), 35673569 (1996)Google Scholar
6 Dubois, L. H., Zegarski, B. R., Kao, C-T., and Nuzzo, R. G., Surf. Sci.. 236, 7784 (1990)Google Scholar
7 Wilkie, J. H., Eyden, G. J. M. van, Frigo, D. M., Smit, C. J., Reuvers, P. J. et al., in Gallium Arsenide and Related Compounds, edited by T., Ikegami, F., Hasegawa, and Y., Takeda, (Proceedings of the Nineteenth International Symposium, Karuizawa, Japan, 1992) pp. 115–20.Google Scholar
8 Nagano, M., Iwai, S., Nemoto, K., and Aoyagi, Y., Jpn. J. Appl. Phys. 33, L1289–L1291 (1994).Google Scholar
9 Zhou, X.-L. and White, J. M., Appl. Surf. Sci. 35, 5262 (19881989).Google Scholar
10 Slaughter, A. and Gland, J. L., J. Vac. Sci. Technol. A. 10 (1), 6668 (1992).Google Scholar
11 Dresser, M. J., Taylor, P. A., Wallace, R. M., Choyke, W. J., and Yates, J. T., Jr., Surf. Sci. 218, 75107 (1989).Google Scholar
12 Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133 (4), 666671 (1986).Google Scholar
13 Mann, K. and Yu, M. L., Phy. Rev. B 35 (12), 60436050 (1987).Google Scholar
14 Saranin, A. A., Khramtsova, E. A., and Lifshits, V. G., Surf. Sci. 302, 5763 (1994).Google Scholar
15 Naitoh, M., Ohnishi, H., Ozaki, Y., Shoji, F., and Oura, K., Appl. Surf. Sci. 60/61, 190194 (1992).Google Scholar
16 Hara, M., Domen, K., Onishi, T., Nishihara, C., Kaise, Y.. et al., Surf. Sci. 242, 459463 (1991).Google Scholar
17 Hara, M., Domen, K., Onishi, T., and Nozoye, H., Appl. Phys. Lett. 59, 17931795 (1991).Google Scholar
18 Dubois, L. H., Zegarski, B. R., Gross., M. E., and Nuzzo, R. G., Surf. Sci. 244, 8995 1991).Google Scholar
19 Eight Peak Index of Mass Spectra (Royal Society of Chemistry, Nottingham, 1983),.Google Scholar
20 Widdra, W., Huang, C., Yi, S. I., and Weinberg, W. H., J. Chem. Phys. 105 (13), 56055617 (1996).Google Scholar
21 Larsson, C. U. S. and Flodstrom, A. S., Surf. Sci. 241, 353356 (1991).Google Scholar
22 Creasy, W. R. and McElvany, S. W., Surf. Sci. 201, 5974 (1988).Google Scholar