Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T02:47:17.140Z Has data issue: false hasContentIssue false

Deposition of tungsten on silicon dioxide by GeH4 reduction of WF6

Published online by Cambridge University Press:  25 February 2011

T. G. M. Oosterlaken
Affiliation:
Delft University of Technology, DIMES/section submicron technology P.O. box 5046, 2600 G A Delft, The Netherlands
G. J. Leusink
Affiliation:
Delft University of Technology, DIMES/section submicron technology P.O. box 5046, 2600 G A Delft, The Netherlands
C. A. van der Jeugd
Affiliation:
Delft University of Technology, DIMES/section submicron technology P.O. box 5046, 2600 G A Delft, The Netherlands
G. C. A. M. Janssen
Affiliation:
Delft University of Technology, DIMES/section submicron technology P.O. box 5046, 2600 G A Delft, The Netherlands
S. Radelaar
Affiliation:
Delft University of Technology, DIMES/section submicron technology P.O. box 5046, 2600 G A Delft, The Netherlands
Get access

Abstract

Chemical Vapour Deposition of tungsten on silicon dioxide by means of GeH4 reduction of WF6 is studied. The influence of the ambient gas on the nucleation of tungsten is examined. Experiments have been performed in both Ar and H2 ambient. It is found that an Ar ambient hinders nucleation on silicon dioxide in comparison with a hydrogen ambient. Adhesion of the film and uniformity over the wafer are acceptable for the films deposited in hydrogen ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFErences

[1] See, for instance, the proceedings of the workshops on Tungsten and other Refractory Metals for VLSI I-V (Materials Research Society, Pittsburgh, PA, 19851990)Google Scholar
[2] Broadbent, E. K. and Ramiller, C. L., J. Electrochem. Soc. 132, 1243, (1985)Google Scholar
[3] Kusumoto, Y., Takakuwa, K., Hashinokuchi, H., Ikuta, T. and Nakayama, I., in Tungsten and other Refractory metals for VLSI Applications III, edited by Wells, V. A. (MRS, Pittsburgh, PA, 1988), p. 103 Google Scholar
[4] van der Jeugd, C. A., Leusink, G. J., Janssen, G. C. A. M., and Radelaar, S., Appl. Phys. Lett., 57, 354, (1990).CrossRefGoogle Scholar
[5] Sebastian I adhesion tester, Quad GroupGoogle Scholar
[6] Leusink, G. J., Oosterlaken, T. G. M., van der Jeugd, C. A., Janssen, G. C. A. M., and Radelaar, S., Appl. Surf. Sci. 53, 47 (1991)CrossRefGoogle Scholar
[7] Kendall, K., J. Appl Phys D, 4, 1186 (1971)Google Scholar
[8] van der Jeugd, C. A., Leusink, G. J., Janssen, G. C. A. M. and Radelaar, S., J. Appl. Phys. 70 (4), 2353, (1991)CrossRefGoogle Scholar
[9] Kwakman, L. F. T., Vermeulen, W. J. C., Granneman, E. H. A., Hitchman, M. L., in Tungsten and other Refractory metals for VLSI Applications II, edited by Broadbent, E. K. (MRS, Pittsburgh, PA, 1987), p. 377 Google Scholar
[10] Schmitz, J. E. J., Buiting, M. J. and Ellwanger, R. C., in Tungsten and other Refractory metals for VLSI Applications IV, edited by Blewer, R. S. (MRS, Pittsburgh, PA, 1989), p. 27 Google Scholar