Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:41:30.421Z Has data issue: false hasContentIssue false

Deposition of Potassium Niobate Thin Films by Metalorganic Chemical Vapor Deposition and their Nonlinear Optical Properties

Published online by Cambridge University Press:  21 February 2011

M. J. Nystrom
Affiliation:
Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208
J. Chen
Affiliation:
Department of Chemistry Northwestern University, Evanston, IL 60208
D. Studebaker
Affiliation:
Department of Chemistry Northwestern University, Evanston, IL 60208
T. J. Marks
Affiliation:
Department of Chemistry Northwestern University, Evanston, IL 60208
W. P. Lin
Affiliation:
Department of Physics and Astronomy Northwestern University, Evanston, IL 60208
G. K. Wong
Affiliation:
Department of Physics and Astronomy Northwestern University, Evanston, IL 60208
Get access

Abstract

Ferroelectric potassium niobate thin films have been deposited by conventional, low pressure metalorganic chemical vapor deposition on several types of oxide substrates. The films were epitaxial with a c-axis orientation normal to the substrate. Atomic force microscopy revealed a surface roughness of 1 - 4 nm. Transmission electron microscopy showed the film/substrate interface to be semi-coherent with lattice misfit accommodated by misfit dislocations. The nonlinear optical properties of the KNbO3 films were measured by a transmission technique. The room temperature, effective second order nonlinear coefficient was 13 pm/V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Günter, P., Opt. Commun. 11, 285 (1974).Google Scholar
2 Uematsu, Y., Jap. J. Appl. Phys. 13, 1362 (1974).10.1143/JJAP.13.1362Google Scholar
3 Günter, P., Phys. Rep. 93, 199 (1982).Google Scholar
4 Günter, P. and Huignard, J.-P., Photorefractive Materials and Their Applications I, (Springer-Verlag, Berlin, 1988), p. 7.10.1007/3-540-18332-9_29Google Scholar
5 Günter, P., Springer Proc. Phys. 18, 2 (1987).Google Scholar
6 Gutman, R., Hulliger, J., and Reusser, E., Journal of Crystal Growth 126, 578 (1993).Google Scholar
7 Swartz, S. L., Melling, P. J., and Grant, C. S., Mat. Res. Soc. Symp. Proc. 152, 227 (1989).Google Scholar
8 Chow, A. F., Lichtenwalner, D. J., Woolcott, R. R. Jr., Graettinger, T. M., Auciello, O., Kingon, A. I., Boatner, L. A., and Parikh, N. R., Appl. Phys. Lett. 65, 1073 (1994).Google Scholar
9 Thôny, S. Schwyn and Lehmann, H. W., Appl. Phys. Lett. 61, 373 (1992).Google Scholar
10 Sashital, S. R., Krishnakumar, S. and Esener, S., Appl. Phys. Lett. 62, 2917 (1993).Google Scholar
11 Hung, L. S. and Bosworth, L. A., Appl. Phys. Lett. 62, 2625 (1993).Google Scholar
12 Hiskes, R., Dicarolis, S. A., Fouquet, J., Lu, Z., Feigelson, R. S., Route, R. K., Leplingard, F. and Foster, C. M., Mat. Res. Soc. Symp. Proc. 335, 299 (1993).Google Scholar
13 Nystrom, M. J., Wessels, B. W., Studebaker, D. B., Marks, T. J., Lin, W. P., and Wong, G. K., 1995 (unpublished).Google Scholar
14 Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).10.1063/1.357097Google Scholar
15 Spencer, B. J., Voorhees, P. W., and Davis, S. H., J. Appl. Phys. 73, 4955 (1993).Google Scholar
16 Nystrom, M. J., Wessels, B. W., Chen, J., and Marks, T. J., 1995 (unpublished).Google Scholar
17 Lu, H. A., Wills, L. A., Wessels, B. W., Lin, W. P., Zhang, T. G., Wong, G. K., Neumayer, D. A. and Marks, T. J., Appl. Phys. Lett. 62, 1314 (1993).Google Scholar
18 Nystrom, M. J., Wessels, B. W., Lin, W. P., Wong, G. K., Neumayer, D. A. and Marks, T. J., Appl. Phys. Lett. 66, 1726 (1995).Google Scholar