Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T16:52:21.390Z Has data issue: false hasContentIssue false

Deposition of Polysilicon Films by Hot-Wire CVD at Low Temperatures for Photovoltaic Applications

Published online by Cambridge University Press:  15 February 2011

J. Puigdollers
Affiliation:
Laboratori de Fisica de Capes Fines (LFCF), Departament de Física Aplicada i Electrónica, Universität de Barcelona, Av, Diagonal, 647, 08028-Barcelona, Spain.
J. Bertomeu
Affiliation:
Laboratori de Fisica de Capes Fines (LFCF), Departament de Física Aplicada i Electrónica, Universität de Barcelona, Av, Diagonal, 647, 08028-Barcelona, Spain.
J. Cifre
Affiliation:
Laboratori de Fisica de Capes Fines (LFCF), Departament de Física Aplicada i Electrónica, Universität de Barcelona, Av, Diagonal, 647, 08028-Barcelona, Spain.
J. Andreu
Affiliation:
Laboratori de Fisica de Capes Fines (LFCF), Departament de Física Aplicada i Electrónica, Universität de Barcelona, Av, Diagonal, 647, 08028-Barcelona, Spain.
J. C. Delgado
Affiliation:
Laboratori de Fisica de Capes Fines (LFCF), Departament de Física Aplicada i Electrónica, Universität de Barcelona, Av, Diagonal, 647, 08028-Barcelona, Spain.
Get access

Abstract

Polysilicon (poly-Si) thin films have been obtained using hot-wire chemical vapor deposition (HWCVD) from silane-hydrogen mixtures. The films were prepared at low substrate temperatures (down to 200°C) and at very high deposition rates (up to 40 Å/s). They showed good crystalline properties and no amorphous phases were detected. The films can also be efficiently doped by adding diborane or phosphine to gas phase. In this paper, an overview of the properties of the poly-Si films, intrinsic and p and n-doped, deposited at our laboratory by HWCVD is presented and discussed. The properties of the material and the features of the deposition technique which are interesting for their application in photovoltaics are emphasized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barnett, A.M., Hall, R.B., Rand, J.A., Kendall, C.L. and Ford, D.H., Solar Energy Materials 23, 164 (1991).Google Scholar
2. Meier, J., Flückiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
3. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
4. Matsumura, H., Jpn. J. Appl. Phys. 30, L1522 (1991).Google Scholar
5. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J. and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
6. Nakano, N., Marville, L. and Reif, R., J. Appl. Phys. 72, 3641 (1992).Google Scholar
7. Lin, H.C. Lin, H.Y., Chang, C.Y., Jung, T.G., Wang, P.J., Deng, R.C. and Lin, J., J. Appl. Phys. 76, 1572 (1994).Google Scholar
8. Edwards, D.F., in Handbook of Optical Constants of Solids, edited by Palik, E.D. (Academic Press Inc., Orlando, 1985) p. 547.Google Scholar